Research

ECE Faculty Research Areas and Resources

Graduate work in Electrical Engineering offers emphases in the areas of applied electromagnetics, antennas, and microwave, power systems and power electronics, robotics and autonomous systems, communications and networking. In addition to the more discipline-specific equipment listed below, the ECE department has well-equipped laboratories of networked PCs, general purpose test and measurement equipment such as high-speed oscilloscopes, arbitrary function generators, logic analyzers, and printed circuit board prototyping machines and software.

Electronics Image

Research activities in the Applied Electromagnetics area include:

  •  Electromagnetic materials (development of accurate and novel materials characterization methods; artificial materials analysis, design, fabrication, and measurement; materials with tailorable properties).
  • Antennas (electrically small antennas; miniaturization of ultrawideband antennas; reconfigurable / autonomous robotic antennas and antenna arrays; novel antenna reconfiguration methods and phase-change materials; "green" antennas on paper for security applications; resistively loaded antennas; wideband, coplanar and flexible antennas; metamaterial-inspired antennas).
  • Artificial electromagnetic surfaces (high impedance and textured surfaces).
  • Microwaves (Design of passive microwave components and baluns; applications of metamaterial-inspired designs for microwave components and antennas from MHz to THz).
  • Direct-write manufacturing of electromagnetic devices (antennas and microwave frequency devices; MEMS).

Resources in support of this program include an anechoic chamber, many vector network analyzers, a number of electromagnetic materials characterization systems, impedance analyzers, fast rise time pulse generators and detectors, Agilent Advanced Design System, Microwave Studio, and IE3D. In addition, the Steven P. Miller Endowed Chair in electrical engineering was established in 2001 to support telecommunications in the ECE department.

Electronics Image

Research activities in the area of controls, and autonomous robotics systems (CARS) include: unmanned systems, autonomous systems, robotics, machine control, fuzzy logic control, nonlinear and adaptive control, visual servo-ing, system identification, fault analysis, modeling of power systems, power systems stability, generator dynamics, and wind power. In addition, a number of robotics and controls projects are performed in association with the School of Mines Center of Excellence in Advanced Manufacturing and Production (CAMP) and Advanced Material Processing Center (AMP).  Resources in support of this program include logic analyzers, a variety of microcontroller and microprocessor development systems, FPGA and CPLD prototyping boards, VHDL and Verilog compilers, Analog Devices DSP development tools, Mentor Graphics Computer Aided Design Toolset, Matlab/Simulink embedded coding tool sets, Kiel complier tool chains, and printed circuit board manufacturing equipment.

Electronics Image

Research activities in the area of power systems and power electronics include: the design, analysis and modeling of power system, control and protection of power transmission and distribution grids, electric machines and motor drives, design and control of power electronics converters based on semiconductor switching devices (Si, SiC, and GaN), integration of renewable energy resources (wind, solar, fuel-cell, etc.), and applied power electronics devices in power systems. Resources in support of this program include high-voltage dc power supply, DSpace board with toolbox embedded in Matlab for hardware-in-loop experiment, electric machines, DSP control boards, power modules, various relays, and many other related equipments, tools, and software for lab research.

Electronics Image

Research activities in the area of communications and networking include: problems in the physical layer, MAC, and networking layers, coding and modulation, flow and congestion control; mathematical and simulation techniques for the analysis of networks and communications systems; protocol design, performance evaluation and experimental implementation for wireless networking including cognitive radio networks, vehicular networks, wireless autonomous networks; optical and other technologies.