
Computer Science Assessment Plan

NOTE: The assessment plan and results are depicted in the Criterion 3 and Criterion 4 sections

of this program’s self-study for accreditation under ABET, Inc. These sections are on the

following pages.

27

CRITERION 3. STUDENT OUTCOMES

A. Student Outcomes

List the student outcomes for the program and indicate where the student outcomes are
documented.

The outcomes describe the core competencies expected of all Computer Science graduates
from SDSM&T. The focus of the program is on preparing graduates for software
development careers that emphasize mathematical, scientific, and engineering applications.
The program also prepares students for their careers by emphasizing communication,
teamwork, ethics, and by examining the local, global, and societal impacts of innovation and
technological advancement. At the time of graduation, all students will:

1. possess a strong foundation in the software development process;
2. be able to solve problems using a variety of programming languages and have

extensive experience with at least one high-level language;
3. have a background in computer hardware and experience with a variety of operating

systems;
4. possess an extensive background in mathematics and an appreciation of the scientific

method;
5. have an understanding of the theoretical foundations of computing;
6. have developed effective communication skills and have experience working with

teams;
7. possess an understanding of professional, ethical, legal, security and social issues and

responsibilities.

The department website http://www.mcs.sdsmt.edu/view.php?p=3601 is the primary
repository for all assessment materials, including the program outcomes.

B. Relationship of Student Outcomes to Program Educational Objectives

Describe how the student outcomes prepare graduates to attain the program educational
objectives.

While all outcomes support the educational objectives to some degree, the table below (Table
3.1) indicates the programmatic Student Outcomes which most strongly support each
objective. Outcomes 1 (software development), 2 (language skills), and 3 (hardware and
systems) are foundational skills required for any position in industry. These are essential for
the achievement of Objectives 1 (mastery of the field) and 5 (life-long learning). The ability
to pursue an advanced degree (Objective 2) and to do research or contribute to the field of
computer science in other ways (Objective 4) is enhanced by Outcomes 4 (mathematics and
science), 5 (theoretical foundation), and 7 (social responsibility). Leadership potential
(Objective 3) is a difficult skill to teach but Outcomes 6 (communication skills) and 7 (social
responsibility) are vital tools for an aspiring leader.

28

 Program Objectives

SDM&T
Computer
Science
Program

Graduates
who have
entered
industry will
have
demonstrated
a mastery of
their field.

Graduates
who
continued
their
education
beyond the
bachelor’s
level will
have the
necessary
background
to
successfully
complete
advanced
degrees.

Graduates will
have
demonstrated
their ability to
assume
leadership
roles through
career
advancement
or by
assuming
responsibilities
beyond those
expected of
entry-level
positions.

Graduates
will be
involved in
their
profession
and make
contributions
to the field of
computer
science

Graduates
will have
the requisite
foundation
for life-long
learning and
will possess
the skills to
adapt and
thrive in the
rapidly-
changing
field of
computer
science.

Student
Outcomes

1. possess a
strong foundation
in the software
development
process;

X X X

2. be able to solve
problems using a
variety of
programming
languages and
have extensive
experience with at
least one high-
level language;

X X

3. have a
background in
computer
hardware and
experience with a
variety of
operating
systems;

X X

4. possess an
extensive
background in
mathematics and
an appreciation of

 X X X

29

the scientific
method;

5. have an
understanding of
the theoretical
foundations of
computing

 X X

6. have developed
effective
communication
skills and have
experience
working with
teams;

 X X X

7. possess an
understanding of
professional,
ethical, legal,
security and
social issues and
responsibilities.

 X X

Table 3.1: Mapping Program Student Outcomes to Program Objectives

C. Process for the Establishment and Revision of the Student Outcomes

Describe the process used for establishing and revising student outcomes.

The primary stakeholders in the development and revision of the student outcomes are (1)
industry (2) students and alumni (3) the faculty and (4) the university academic leadership.

Constituents Mechanism for Participation

Industry The industrial advisory board, recruiters

Graduates Alumni surveys, departmental involvement

Current students Senior exit surveys

Faculty Curriculum committee

Academic leadership Associate Provost for Academic Affairs and Assessment, Annual report

Table 3.2: Primary Stakeholders for Computer Science Program

1. Industry. The CS program has had an Industrial Advisory Board (IAB) since 1999.

The board typically meets on campus every two years but provides input during the
intervening time as requested. The IAB folder contains the PowerPoint presentations
for each IAB meeting since its creation. The initial IAB presentations are made to the
students, the faculty, and the administration (separately) allowing the IAB to
incorporate feedback from each group into their final presentation. The final version

30

is submitted to the department and is an important tool in the assessment process.
Each meeting begins with an examination of the program’s mission statement,
objectives, and student outcomes.

In Fall 2012, minor changes were made to the Objectives, and a substantial rewrite of
the Outcomes occurred. The content of the Outcomes was not significantly changed
but items were rewritten to reflect current trends and priorities. The shorter list was
also perceived as easier for students to understand and less of a “laundry list.” Table
3.3 lists the Outcomes prior to the IAB meeting and the revised outcomes. One
recommendation from the IAB was to drop the references to “scientific computing” in
the mission, objectives, and outcomes because it appeared too restrictive. The
Curriculum Committee did not immediately implement this suggestion but considered
the impact this would have on industry’s perception of the special niche the program
fills.

In February 2013, the Curriculum Committee voted to adopt the recommended
change. Recruiters visit campus twice each year and meet with the Department Head,
Dr. Riley, to discuss our program. Their input is another valuable source of
information from both industry and alumni since many recruiters are graduates of
SDSM&T.

Student Outcomes
before 2012 IAB Meeting

Student Outcomes
after 2012 IAB Meeting

Notes

1. have a strong foundation in
the software development
process;

1. possess a strong foundation in
the software development
process;

substance
unchanged

2. be able to read and write
program code in a variety of
programming languages and
have extensive experience with
at least one high-level language;

2. be able to solve problems using
a variety of programming
languages and have extensive
experience with at least one high-
level language;

substance
unchanged

3. have experience in
programming for and using a
variety of computer operating
systems;

3. have a background in computer
hardware and experience with a
variety of operating systems;

Combined 3, 6

4. possess problem solving and
algorithm development skills;

4. possess an extensive
background in mathematics and
an appreciation of the scientific
method;

Old 4
deleted –
redundant with
2. New 4
combines 8, 9.

5. have a strong understanding
of the theoretical foundations of
computing;

5. have an understanding of the
theoretical foundations of
computing;

unchanged

6. have a strong background in 6. have developed effective combined 10,

31

computer hardware; communication skills and have
experience working with teams;

11

7. has the knowledge to produce
effective conceptual and
physical database systems;

7. possess an understanding of
professional, ethical, legal,
security and social issues and
responsibilities

Old 7 deleted.
IAB
considered this
too course-
specific.
New 7
combined 12,
13, mirrors
ABET/CAC
wording

8. possess an extensive
background in computer-related
mathematics;

9. have an appreciation of the
scientific method;

10. have developed and
practiced effective
communication skills;

11. have experience working in
teams;

12. understand and respect the
professional standards of ethics
expected of a computer scientist

13. have an appreciation for the
societal/ global impact of
computing

Table 3.3: Mapping Previous Student Outcomes to Current Student Outcomes

2. Graduates. The department has attempted to gather statistically valid data on alumni

opinions about the program but, as is often the case, survey response rates are too low
to be meaningful. The CS program is fortunate to have strong alumni involvement in
a variety of ways which provides an alternate means of gathering input from
graduates of the program. Innovative Systems has opened an office on campus with
the express purpose of hiring current CS students as interns. Alumni who work for
Innovative are an integral part of the department as senior design sponsors, guest
lecturers, financial supporters, and advocates with the administration. The same is
true for EROS Data Center, GoldenWest, Raven Industries, L-3 Communications,
and private consultants in town. EROS and Raven have a campus presence, L-3
management visits the laboratories they have built on a regular basis, and alumni at
Golden West have partnered with Innovative to assist our mobile development
efforts. Given the geographic isolation of the program, the degree to which alumni of
the program participate in setting the direction and ensuring the currency of the
offerings continues to be a source of pride for the program. One benefit of being a

32

small department is that faculty members routinely maintain contact with graduates of
the program. Although this is an informal mechanism, it has been a source of
information about the perceived level of preparation for graduate studies. For
example, when the curriculum committee considered dropping Theory of
Computation from the list of offered electives, emails from graduates who completed
advanced degrees were helpful in deciding to keep the course. While informal
mechanisms are not scientific, they can provide supplemental guidance.

3. Current Students. The main mechanism for soliciting input from current students is

through the Exit Interviews. All graduating seniors are invited to participate in a
group discussion about the strengths and weaknesses of the program. Almost all of
the graduating seniors will have had at least one industrial experience and can provide
insightful comments about the program’s ability to prepare graduates for industry
careers. Student comments on the IDEA forms – the student evaluation surveys used
at the end of a course – also provide valuable assessment information. The
Department Head looks for common threads within a class, such as the request by
students in Software Engineering to switch the class to agile development in
preparation for senior design, and also for common themes across classes, such as a
request for additional coverage of Linux earlier in the curriculum. Individual class
issues are discussed with the faculty member as part of the annual review. Issues
which span multiple courses in the curriculum are referred to the curriculum
committee by the Department Head.

4. Faculty. All computer science faculty members serve on the CS Curriculum
Committee. This is a cohesive group with considerable power to change the
curriculum and the assessment program. The curriculum committee meets once per
year to review and refine the Program Objectives and Student Outcomes. This
meeting occurs after the IAB meeting, if one is held that year. As noted above,
substantial changes to the Program Outcomes and minor changes to the Program
Objectives were made in Fall 2012. Notes from the Curriculum Committee meetings
are kept by Ed Corwin.

5. Academic Leadership. Dr. Kate Alley serves as the Associate Provost for Academic
Affairs and Assessment. She is responsible for reviewing the Student Outcomes and
Program Objectives to ensure that they align with the current strategic plan and stated
institutional objectives. She is also responsible for monitoring program objectives for
compliance with both ABET and HLC accreditation standards. Results of the Annual
Assessment Report are communicated to her. Dr. Alley is a great asset to the
departmental assessment efforts.

D. Enabled Student Characteristics

Characteristics a) through i) are not required student outcomes. They are, however, required
to be enabled by your program. In other words, the program must provide every student with
the opportunity to attain each characteristic. Indicate how the curriculum enables each
characteristic.

33

The program has designed its Student Outcomes, and the Course Outcomes that support
them, to enable the following characteristics in students about to graduate from the program:

(a) An ability to apply knowledge of computing and mathematics appropriate to the
discipline
(b) An ability to analyze a problem, and identify and define the computing requirements
appropriate to its solution
(c) An ability to design, implement, and evaluate a computer-based system, process,
component,
or program to meet desired needs
(d) An ability to function effectively on teams to accomplish a common goal
(e) An understanding of professional, ethical, legal, security and social issues and
responsibilities
(f) An ability to communicate effectively with a range of audiences
(g) An ability to analyze the local and global impact of computing on individuals,
organizations,
and society
(h) Recognition of the need for and an ability to engage in continuing professional
development
(i) An ability to use current techniques, skills, and tools necessary for computing practice.
(j) An ability to apply mathematical foundations, algorithmic principles, and computer

science theory in the modeling and design of computer-based systems in a way that

demonstrates comprehension of the tradeoffs involved in design choices.*

(k) An ability to apply design and development principles in the construction of software

systems of varying complexity.*
 (*Additional outcomes for Computer Science Programs)

A mapping of Student Outcomes to the Enabled Characteristics is provided in Table 3.4. One of
the primary measurements for assuring attainment of Student Outcomes is by monitoring student
mastery of material in designated courses. Thus, the Course Outcomes from required courses
which support the Student Outcomes are also provided. As noted in the table, all of the Enabled
Characteristics are supported by multiple Course Outcomes. The philosophy of the department
is that these characteristics need to be reinforced throughout the curriculum. Data that
demonstrates the level of attainment across all four years of the curriculum is collected and
analyzed by the Curriculum Committee.

ABET/CAC Characteristics Enabled by

 Program
Student

Outcome

Supported by Course
Outcomes (required courses)

(a) An ability to apply knowledge of
computing and mathematics appropriate to the
discipline

2, 5, 4 Every required course
contributes to some extent to
this outcome.

(b) An ability to analyze a problem, and
identify and define the computing requirements
appropriate to its solution

2, 3 CSC 150, CSC 250, CSC
300, CSC 314, CSC 317,
CSC 372, CSC 421, CSC

34

456,CSC 465/467, CSC 461

(c) An ability to design, implement, and
evaluate a computer-based system, process,
component, or program to meet desired needs

1, 2, 3 Every required course
(except CSC 110 and CSC
251) contributes to some
extent to this outcome.

(d) An ability to function effectively on teams
to accomplish a common goal

6 CSC 250, CSC 300, CSC
372, CSC 465/467, CSC 470

(e) An understanding of professional, ethical,
legal, security and social issues and
responsibilities

7 CSC 110, CSC 150, CSC
465/467, CSC 470, CSC 484

(f) An ability to communicate effectively with
a range of audiences

6 CSC 250, CSC 300, CSC
372, CSC 465/467, CSC 470

(g) An ability to analyze the local and global
impact of computing on individuals,
organizations, and society

7 CSC 110, CSC 150, CSC
465/467, CSC 470, CSC 484

(h) Recognition of the need for and an ability
to engage in continuing professional
development

Objective 5
supported by
Outcomes 1, 2,
3, 4, 6

Every required course
(except CSC 110 and CSC
251) contributes to some
extent to this outcome.

(i) An ability to use current techniques, skills,
and tools necessary for computing practice.

1, 2, 3 Every required course
(except CSC 110 and CSC
251) contributes to some
extent to this outcome.

(j) An ability to apply mathematical
foundations, algorithmic principles, and
computer science theory in the modeling and
design of computer-based systems in a way
that demonstrates comprehension of the
tradeoffs involved in design choices.

1, 2, 5 All advanced required
courses contribute to this
attribute to some extent. In
particular, CSC 300, CSC
372, CSC 484, and senior
design . Several electives
also strongly support this
attribute including CSC 445
Theory of Computation,
CSC 423 Computer Security,
and CSC 412 Cryptography.

(k) An ability to apply design and development
principles in the construction of software
systems of varying complexity

1, 2 All programming courses
contribute to this attribute to
some extent. Software
engineering and the senior
design sequence allow
students to complete large
projects in a team
environment.

Table 3.4: Mapping of Student Outcomes and Course Outcomes to Enabled Student

Characteristics

35

A complete list of required and elective courses, and how each contributes to the attainment of
Student Outcomes, is provided in Table 3.5 (required courses) and Table 3.6 (elective courses).
The columns numbers equate to the Student Outcomes listed in table 3.1. Full descriptions of
the Course Outcomes for each course and the mapping of those outcomes to the Student.
Outcomes are provided in the syllabi and in a condensed format in the supplemental assessment
materials provided with the course displays.

Required Courses S.O.#1 S.O.#2 S.O.#3 S.O.#4 S.O.#5 S.O.#6 S.O.#7

CSC 110
Intro. to CS

 X X

CSC 150
Computer Science I

X X X

CSC 250
Computer Science II

X X X

CSC 251
Discrete Mathematics

 X X

CSC 300
Data Structures

X X X X X X

CSC 314
Assembly Language

X X X X X X

CSC 317
Computer Organization

X X X

CSC 372
Analysis of Algorithms

X X X X X

CSC 421
GUI/OOP

X X X

CSC 456
Operating Systems

 X X X X X

CSC 461
Programming Languages

X X X

CSC 465/467
Senior Design

X X X X

CSC 470
Software Engineering

X X X X X

CSC 484
Database Systems

X X X

Table 3.5: Mapping Course Outcomes to Student Outcomes (Required Courses)

36

Elective Courses S.O.#1 S.O.#2 S.O.#3 S.O.#4 S.O.#5 S.O.#6 S.O.#7

CSC 410
Parallel Processing

X X X X X

CSC 412
Cryptography

 X

CSC 415
Robotics

 X X

CSC 416
Autonomous Systems

 X X

CSC 426
Computer Security

 X X X

CSC 433
Computer Graphics

 X X X X

CSC 445
Theory of Computation

 X X

CSC 447
Artificial Intelligence

 X X X

CSC 449
Pattern Recognition

 X

CSC 464
Image Processing

X X X X

Table 3.6: Mapping Course Outcomes to Student Outcomes (Elective Courses)

37

CRITERION 4. CONTINUOUS IMPROVEMENT

This section of your Self-Study Report should document your processes for regularly assessing
and evaluating the extent to which the student outcomes are being attained. This section should
also document the extent to which the student outcomes are being attained. It should also
describe how the results of these processes are being utilized to effect continuous improvement
of the program.

Assessment is defined as one or more processes that identify, collect, and prepare the data
necessary for evaluation. Evaluation is defined as one or more processes for interpreting the data
acquired though the assessment processes in order to determine how well the student outcomes
are being attained.

Although the program can report its processes as it chooses, the following is presented as a guide
to help you organize your Self-Study Report.

A. Student Outcomes Measurement

It is recommended that this section include (a table may be used to present this information):

1. A listing and description of the assessment processes used to gather the data upon which

the evaluation of each student outcome is based. Examples of data collection processes
may include, but are not limited to, specific exam questions, student portfolios, internally
developed assessment exams, senior project presentations, nationally-normed exams, oral
exams, focus groups, industrial advisory committee meetings, or other processes that are
relevant and appropriate to the program.

2. The frequency with which these assessment processes are carried out.
3. The expected level of attainment for each of the student outcomes.
4. Summaries of the results of the evaluation process and an analysis illustrating the extent

to which each of the student outcomes is being attained.
5. How the results are documented and maintained.

Assessment is an institutional priority as noted in the Strategic Priorities provided in Section 2:
“Ensure a legacy of excellence through dedication to continuous quality improvement.” All
faculty members are required to participate in assessment activities, and the quality of that
participation is a component of the annual performance review. Faculty are required to provide
data for the assessment instruments described in this section, participate in the IAB and the
focused curriculum reviews, and complete course-embedded assessments on the prescribed
schedule.

Ten data-collection instruments have been selected by the department for use as the centerpieces
of the assessment process. Additional data-collection instruments are used, but the following ten
instruments are systematically applied and the data analyzed, discussed, and acted upon
according to a program-wide schedule:

1. Major Field Test (MFT) results
2. Industrial Advisory Board (IAB) feedback

38

3. Structured Course-Embedded Assessments
4. Capstone Project Evaluation
5. Senior Exit Interviews
6. Outstanding Recent Graduate Awards
7. Student Competition Involvement
8. Co-op reports
9. Undergraduate Research Involvement
10. Placement rates/ Starting Salaries

The department has included alumni surveys in this list in previous years, but it has become
increasingly difficult to collect a sufficient number of responses to produce meaningful statistics.
The original survey was six pages long and had a very low return rate. The CS faculty pared the
survey down to two pages, but the response rate was still low. An online survey tool was tried
but did not increase response rates. Dr. Riley instituted a newsletter as a mechanism for
increasing alumni engagement which may produce results in the next year or two. At the
moment, the alumni prefer responding to individual emails and a significant amount of feedback
is gained in this way. The department will continue to search for ways to increase participation
by alumni.

The Annual Assessment Report (AAR) is the mechanism by which all data (qualitative and
quantitative) yielded by the ten instruments listed above (and described below) are brought
together and used by the faculty as a whole to achieve the following:

• A review of the overall ‘health’ of the program and creation of a “state of the
department” annual summary that includes the findings of the annual Focused
Curriculum Review (FCR)

• A review of student attainment as measured by the assessment data gathered that year

• Documentation of the maturation of our assessment instruments and the effectiveness of
the course-embedded assessments

Supplementing the data yielded by the ten instruments listed above are data and input gathered or
received on an opportunistic basis with relevance to specific outcomes or program performance.
Examples of such additional data include information on faculty stability, enrollment, statewide
initiatives, and shifts in campus leadership or priorities, etc.

Implementation of the AAR was motivated by departmental preparations for the 2007
ABET/CAC visit and our experience of the value of performing a “state of the program” annual
review. Copies of the AAR are provided in the accompanying documentation. The 2013
ABET/CAC review process will serve as the 2012-2013 review.

1. Major Field Test (MFT)

Type of measurement – Objective.
Frequency of collection – Every year.
Frequency of analysis – Every three years. Although scores are reviewed every year,
action is not taken as a result of any one year’s results.

39

How collected and from whom – The exam is given as part of the Senior Design course.
All students enrolled in Senior Design are required to take it, and a portion of the grade is
based on the student’s participation.
Benchmarks – The exam provides feedback in three areas.

Programming Fundamentals – We believe our students receive a solid foundation
in programming with a degree of rigor that exceeds that of many other schools.
Thus, our benchmark is to be above average in this category and to achieve the
80% mark.
Computer organization, architecture, operating systems – We believe our students
should be somewhat above the national average in this category. Our benchmark
is 70%.
Discrete Structures, Algorithms, theory – We believe our students should be
above average in algorithms and mathematics but average in theory. Our
benchmark is an aggregate score of 75%.

Table 4.1: Summary of MFT results from 2007 – 2012

All students in Senior Design are required to take the MFT. The scores reported are for

approximately 15-20 students per year.

As noted above, all students enrolled in Senior Design take the MFT (i.e., between 15 and 20
students per year); nonetheless, no one year provides sufficient information to motivate change.
The averages for the past six years are: Programming – 91%, Discrete Structures and
Algorithms – 85%, Systems – 88%, and an overall average of 88%. The faculty reviewed these
results annually and considered three-year averages of student performance as part of the focused
curriculum reviews. The MFT scores have not indicated weaknesses in our program that require
remediation.

0

20

40

60

80

100

120

2007 2008 2009 2010 2011 2012

Mean Score

Programming

Discrete

Structures/Algorithms

Systems

40

2. Industrial Advisory Board (IAB)

Type of measurement – Objective/Subjective. Objective feedback is provided by the
participants through statistics on the numbers and types of jobs our alumni have in
different sectors of the industry. Subjective feedback is provided on how well prepared
graduates are to enter the workforce.
Frequency of collection – Every two years.
Frequency of review – Every two years.
How collected and from whom – Alumni and other industrial contacts come to campus
for intensive sessions focusing on curriculum, student preparation, and other issues
identified for a given meeting. Representatives are chosen from diverse companies and
market segments within the industry (defense, networking, algorithm development,
database-driven, hardware-driven, etc.).
Benchmarks – At each meeting, the council is asked to identify the next big change
taking shape in the industry and to define how well SDSM&T is positioned to take
advantage of the coming changes. They also review the program’s objectives, outcomes,
and mission statement and provide feedback to the State of the Department presentation.
The benchmark is to receive a “passing” score on this question. That is, the goal is for
the IAB to determine that the curriculum is evolving in the right direction and only minor
course corrections are required to keep the program on track to address developing needs
in industry.

Year Recommendations

2012 Delete database and networking from outcomes
Database earlier in the curriculum
Add networking
Increase exposure to programming paradigms
Add mobile computing elective
More software engineering tools, unit testing
Add multi-year projects
Increase oral presentation opportunities

2010 Add database and networking to program outcomes
Define focus areas within CS
Improve collaboration with CENG
Add networking

2008 Multi-semester projects
More focus on software engineering

Table 4.2: Summary of IAB recommendations from 2008-2012

A full set of IAB notes and recommendations is available in a separate binder. Table 4.2
summarizes the recommendations since the last ABET visit. All recommendations are
seriously considered, and, after a feasibility analysis, some are selected for
implementation and review. The recommendations that have been implemented are
discussed in more detail in Subsection B, Continuous Improvement, below.

41

3. Course-Embedded Assessments

Type of measurement – Objective/Subjective.
Frequency of collection – Rotation provided below (Table 4.3).
Frequency of review – Course dependent. Electives and some upper-level required
courses are reviewed every two years. Lower-level courses or courses with significant
content changes are evaluated more frequently. Measurement of attainment can be done
in a variety of ways including selected test questions, programs, presentation rubrics, and
other graded events. Course-embedded assessments are used as part of the annual faculty
performance review process by the Department Head and by the CS Curriculum
Committee as part of the annual curriculum review.
How collected and from whom – At the start of every semester, the faculty member
reviews the course outcomes for an assigned course and documents the assessments
designed to specifically address each outcome. The faculty member collects the data;
completes the “Course-Embedded Assessment Worksheet” (to include the results, an
evaluation of the results, and comments on improvements, changes, or experiments); and
posts the final course assessment report on a shared drive. The uniformity and simplicity
of the worksheet allows all faculty members to easily review and understand the results
of each semester’s cycle and sets the stage for discussion and group analysis of the
sufficiency of coverage or student attainment of a particular skill.

Use of course-embedded assessments has evolved as the faculty explores the right
balance between uniformity of standards and individual faculty member autonomy and
creativity. Initial work on carefully defining outcomes resulted in a large number of
overly specific, topic-focused outcomes (e.g., be able to write a bubble sort). As the
faculty have used this technique, shared and discussed the effectiveness of various
assessments, and revisited the task of designing course-embedded assessments semester
after semester, the process has matured. Outcomes have been rewritten to reflect broader
categories of knowledge not tied to a particular textbook or teaching approach, and the
faculty has experienced the value of the expanding archive of Course-Embedded
Assessment summaries (and accompanying materials). The archive and numerous
examples of the forms discussed here will be available to evaluators.

Benchmarks – The faculty reports statistics on student performance on key ‘graded
events’ throughout a course. To ensure that assessments are meaningful (i.e., can be
analyzed over time even as techniques are continuously improved), the faculty focuses on
the percentage of students demonstrating acceptable competence. Grades per se are not
used as assessments; however, a ‘graded event’ (e.g., specific test questions,
programming assignments, etc.) may serve as the assessment of a specific outcome and
also contribute to a grade.

Because grades are the lingua franca of faculty members, acceptable competence is
defined variously (e.g., as 70% or better, as a “C” or better, etc.). Regardless of how it is
defined on a scaled score or via a grade, the program consensus is that “acceptable
competence” means the outcome has been sufficiently mastered to provide a solid basis
for ongoing learning and further mastery at more advanced levels. A shared focus on
“acceptable competence” facilitates faculty attention to the ‘big picture’ and helps it

42

avoid an overly rigid, numbers-driven evaluation process that can preclude the benefits
that come from having a small, integrated, cooperative faculty apply professional
judgment to the evaluation of results across multiple sections or across clusters of closely
related outcomes.

A pattern of poor performance on a topic across multiple semesters, sections, or
professors motivates shifts in material coverage throughout the curriculum. For example,
consistent difficulty with file handling across all sections of CSC 150 resulted in
increased coverage in CSC 250. Course-embedded assessments in CSC 150 revealed this
weakness.

 Fall
2011

Spring
2012

Fall
2012

Spring
2013

Fall
2013

Spring
2014

CSC 110 X

CSC 150 X X X X

CSC 250 X X X

CSC 251 X X X X

CSC 300 X X X X

CSC 314 X

CSC 317 X X

CSC 372 X X

CSC 410 X

CSC 412 X X

CSC 415 X

CSC 421 X X

CSC 426 X

CSC 433 X

CSC 445 X

CSC 447 X X

CSC 449 X

CSC 456 X X

CSC 461 X X

CSC 464 X

CSC 465 X X

CSC 467 X X

CSC 470 X X

CSC 484 X X

Mobile X

Networking X

Table 4.3: Schedule for course-embedded assessments

43

Two fundamental questions are addressed when reviewing the course-embedded
assessments:

1. How did the program perform overall in ensuring each outcome is attained—
as evidenced by the results of all embedded assessments for the specific
outcome?

2. How did each course compare to (multiple) previous offerings of the course?

No one data point is compelling in this analysis. Rather, the faculty looks for trends or
significant changes in attainment (positive or negative) that may have resulted from
changes or experiments in the course. Tables 3.5 and 3.6 in Section 3: Student Outcomes
provide mappings between course outcomes and Student Outcomes.

Each outcome is evaluated to determine the percentage of students acquiring acceptable
competence. As described above, this standard can be referenced by the scaled score of
70 or better or by the grade of “C” but the standard must mean sufficient mastery to
enable continued learning at increasingly advanced levels. To maintain and reinforce this
standard, each faculty member’s course-embedded assessment reports were incorporated
into the annual review process in beginning in 2011. The department head reviews and
provides formal written feedback on the sufficiency and effectiveness of the embedded
assessments and the usefulness of data yielded by the assessments to the overall program-
wide task of evaluating attainment of each outcome.

Initially, course-embedded assessment reports and the department head’s feedback on the
same were used primarily in the annual evaluation process. However, by 2012-2013,
sufficient data had been collected to allow for the aggregation of multiple reports and
meta-analyses of results. Table 4.4. shows such an aggregated analysis. The scaled score
of 70 or greater was used as our numerical reference for “acceptable competence” in the
analysis shown in Table 4.4. The results were reviewed during a summer Curriculum
Committee meeting in 2013, but will become part of the start-of-term Curriculum
Committee meeting agenda in subsequent years.

The low achievement in CSC 150 is somewhat of a concern, but the nature of the course
(i.e., it is a service course for engineering majors who are not interested in programming)
makes those numbers understandable.

The results for SO #3 and SO #4 are the lowest, but still above the program benchmarks
with over 70% of students achieving the required mastery for those outcomes. However,
the committee did examine the content and achievement in the courses contributing to
those outcomes. As noted above, the program has consolidated its coverage of hardware
topics into three courses, Assembly Language, Computer Organization and Architecture,
and Operating Systems. The change was motivated by the assessment process, but
performance in this area must be monitored to determine if too large a change was made
to this aspect of the curriculum.

44

CSC 300 and CSC 470 contribute to the “variety of operating systems” portion of SO #3.
The results are consistent with student surveys which indicate a greater need for Linux
earlier in the curriculum. Students master Linux by the end of their junior year but
struggle in the sophomore year. Therefore, additional coverage of Linux in CSC 300 is
being considered. As always, it is dangerous to draw conclusions from a single data
point, thus the faculty will closely monitor these items in the 2013-2014 academic year.
While special attention will be paid to SO #3 and SO #4 in the next iteration, the initial
review of the performance averages indicates that the curriculum as a whole is enabling
students to achieve the programmatic Student Outcomes.

 SO #1 SO #2 SO #3 SO #4 SO #5 SO #6 SO #7

CSC 110 85

CSC 150 63 64 85

CSC 250 88 76 80

CSC 251 64 76

CSC 300 70 82 70 80 80 85

CSC 314 74 74 73 75

CSC 317 80 73 87

CSC 372 85 80 75 70 85

CSC 421 93 93 93

CSC 456 80 66

CSC 461 100 100 100

CSC 465 95 100 83 100

CSC 470 90 80 80 95 85

CSC 484 86 74 81

Averages 85 84 77 73 80 86 87

Std. Dev. 12 13 5 6 10 6 7

Table 4.4: Summary of student attainment supporting student programmatic outcomes

1. possess a strong foundation in the software development process;

2. be able to solve problems using a variety of programming languages and
 have extensive experience with at least one high-level language;

3. have a background in computer hardware and experience with a variety of operating systems;

4. possess an extensive background in mathematics and an appreciation of the scientific method;

5. have an understanding of the theoretical foundations of computing;

6. have developed effective communication skills and have experience working with teams;

7. possess an understanding of professional, ethical, legal, security and social issues and responsibilities;

4. Capstone Project Evaluation

Type of measurement – Objective/Subjective. The capstone experience requires a year-
long team project, typically with an industry sponsor. This is a critical component of the
curriculum. Students are evaluated by multiple stakeholders on teaming, written and

45

verbal communication skills, and professionalism. Ethics, societal impacts, security, and
legal issues are an integral part of the capstone experience. Attainment of desired skills is
measured throughout the year.
Frequency of collection – Every year.
Frequency of analysis – Every year.
How collected and from whom – Multiple instruments provide assessment data to the
program.
(1) Formal input is provided by the sponsor via a rubric. This includes an evaluation of

the students’ ability to function as a team, their communication skills, their
understanding of the business model of the project, and their technical skills.

(2) Formal input is provided by the faculty on communication skills and technical
accomplishments via a rubric.

(3) Students are required to participate in the Senior Design Fair which is open to the
public and held in conjunction with Alumni Weekend. Alumni primarily provide
informal feedback on the technical accomplishments of the project. While not
quantified in a rubric, their input is valuable to the program.

Benchmarks – Successful completion of the project is tantamount to certifying a student
as industry-ready. Students can, and have, been “fired” from their capstone project. The
benchmark is for 90% of the students to successfully complete all the requirements of the
project and the accompanying activities.

2012-2013 2011 – 2012 2010 – 2011

95% 80% 100%

Table 4.5: Percentage of students who successfully complete Senior Design

In addition, the capstone project is the final opportunity to assess proficiency in a number
of outcomes that are introduced throughout the curriculum. The data in Table 4.x
represents the percentage of students who scored 80% or higher on the graded work for
each topic.

 2012 – 2013 2011 – 2012 2010 – 2011

Globalization 100% 90% 100%

Ethical/social
responsibility/legal

100% 90% 100%

Communication 95% 80% 100%

Teaming 95% 80% 100%

Table 4.6: Student attainment of outcomes in capstone experience

The data and student work are supplied in the accompanying course displays and
assessment materials, both on paper and online.

46

5. Senior Exit Interviews

Type of measurement – Subjective. Seniors are asked to identify strengths and
weaknesses of the existing program and to suggest improvements.
Frequency of collection – Every year.
Frequency of analysis – Every year.
How collected and from whom – Small Group Instruction Diagnostic (SGID) for
graduating seniors. Seniors meet with Dr. Kyle Riley, the Department Head, and do a
group assessment using the SGID process.
Benchmarks – At least 75% positive responses to #4, 5, 6, 7, 9, and 17 (see Table 4.7).

The raw data from the SGID process is included in a separate binder, but a summary of
three questions is presented in table 4.8 below: greatest strength, greatest weakness,
would you recommend this program to others. The survey instrument is given below.

1. (interest in the field) What attracted you to Computer Science as a field of study?
 2. (interest in this program) What attracted you to the SDSM&T Computer Science

program?
3. (accreditation) Does program accreditation by Accreditation Board for Engineering

and Technology (ABET) matter to you?

4. (advising) Did you have access to good advising?

5. (degree program) Were the requirements and expectations of the degree clear?

6. (course quality) Were the courses challenging and productive for you?

7. (course scheduling) Were courses offered sufficiently often at the right times?

8. (electives) What elective courses not now offered would you suggest offering?

9. (preparation) Do you feel prepared for work outside the school?

10. (co-curricular opportunities) Were there opportunities to be involved in

organizations?

11. (program positives) What is going well in the program?

12. (program less-than positives) What is not going well in the program?

13. (personal responsibility) What could you have done to improve your educational

experience?

14. (faculty responsibility) What can the faculty do to improve things in the program?

15. (collective responsibility) What can the students do to improve things in the

program?

16. (staff responsibility) What can the administration do to improve things in the

program?

17. (advice to others) Would you recommend this school/dept to friends and family

members?
18. (graduate school) Would you consider graduate work?

Table 4.7: Questions for SGID Senior Exit Interview

47

 Advising Degree
program

Course quality Scheduling Preparation Recommend?

2007-08* The SGID was not held due to a blizzard that cancelled school

2008-09 Yes Yes Yes,
but overlap

between
advanced
digital and

COA

Yes Yes
But more

GUI needed

Yes

2009-10 Yes,
but

Math
faculty
aren’t

as
know-
ledge-
able as

CS
faculty

 Yes Yes,
courses are
hard here!

75% Yes.
Add more
OOP in the
curriculum

Yes, but come
prepared to

work

2010-11 75%
Yes

75% Yes
Gen. Ed.
is hard to
figure out

Yes 75% Yes
Overlap in
scheduled

times
between
electives

and
required
courses

75% Yes
Want a

course in
networking

Yes

2011-12 Yes Yes
Flowchart
and check

sheet
made a

big
difference

 Yes
Older faculty

more
challenging

(perceived as
positive)

No
Schedule

not
available

far enough
in advance

Yes Yes

2012-13 Yes Yes Yes
 Especially

courses strong
on theory

Electives at
incon-
venient
times,

overlap
required
courses

Yes Yes

Table 4.8: Summary of key answers. “Yes” indicates unanimous agreement.

48

 Strength Weakness

2007-08 The SGID was not held due to a blizzard
that cancelled school

2008-09 Small department,
hard classes

No dominant answer

2009-10 Strong
fundamentals,

teaching C++ as
primary language,
learning assembly

Worrying whether
an elective with
small enrollment
will make or not

2010-11 Professors Overlap in content
between OS and

COA

2011-12 Hands-on focus Scheduling/offerings
of electives

2012-13 Faculty, small
department

Not enough
electives

Table 4.9: Summary of responses to strengths/weaknesses

The faculty review the student input every year and have made curriculum changes in
response to their suggestions. These are detailed in Subsection B below.

6. Outstanding Recent Graduate Awards

Type of measurement – Objective.
Frequency of collection – Every year.
Frequency of review – Every year.
How collected and from whom – The computer science faculty review database
information provided by the Alumni Association on the career paths of students who
have graduated in the past 10 years. The Outstanding Recent Graduate Award recognizes
a graduate who has a record of high achievement in his or her profession. The faculty
review the data and select a nominee. Through 2011, a university-wide committee
selected approximately five outstanding alumni each year. This process has changed
recently to allow one awardee per program. This change will necessitate a change in how
this award is used for program assessment in the future.

Year Awardee Company

2008 Todd Youngman IBM

2010 Jason Dorsey Valicore Technologies

2011 Toren Kopren Hewlett-Packard

2013 Jason Lamont Raven Industries

Table 4.10: Outstanding Recent Graduate Awardees in CS since 2008

As the table indicates, computer science graduates continue to be competitive for this
prestigious award. The award is a side benefit of the process, however. The true value in

49

selecting a nominee for this campus-wide award is the review of graduate achievements.
This process provides data to assess objectives 1 – 4.

Benchmarks – The goal is to have a computer science student selected as a top achiever
each year. A more realistic benchmark is to have a graduate selected once every three
years. As mentioned above, this benchmark will change due to the change in the
selection process.

7. Student Competition Involvement

Type of measurement – Objective. Faculty track the number of students involved in
competition teams. This includes interdisciplinary teams such as the Unmanned Aerial
Vehicle team (UAV), Robotics, other Center of Excellence for Advanced Manufacturing
and Production (CAMP) teams, and the ACM Programming Team.
Frequency of collection – Every year.
Frequency of review – Every year.
How collected and from whom – Team-project advisors and student participants provide
the data.
Benchmarks – The institution has a strong team-project orientation. The goal is to give
all students the opportunity to work on a competitive team. However, many students do
not have the time or inclination to work on such teams. The benchmark is to have
approximately 15% of the students involved in a team competition of some sort. That is
typically 15 – 20 students per year.

Table 4.11: Number of students and percentage of majors participating

 in student competition teams

0

5

10

15

20

25

30

35

2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13

Students

Percentage

50

As the chart indicates, the department is meeting its benchmarks relative to competitive
team involvement. The department is expecting more students to join these teams in the
near future due to the increase in enrollment in the past two years. Since many of the
new students are currently at the freshman and sophomore levels, team participation is
currently lagging behind enrollment as reflected in the percentage of student participants
in 2012-2013 shown in Table 4.11.

The ACM Programming Team has enjoyed particular success in the past five years,
earning two trips to the World Finals (Orlando in 2011 and St. Petersburg, Russia in
2013). The team has qualified for the World Finals five times since 1998 and been one
spot from qualifying three additional times. SDSM&T routinely wins the state, and it is
not uncommon, as was the case in Fall 2012, that the top five teams in the state were all
from SDSM&T.

8. Co-op Reports

Type of measurement – Objective/Subjective. Co-op has been identified as an important
educational experience and students are encouraged to participate. The number of
students who are offered (and accept) co-ops, plus the number who are offered permanent
positions after completing a co-op, is an objective measure of the employability of our
students. Employers are asked to complete a survey which also provides a subjective
measure of the technical abilities, communication skills, and other attributes of students
who have not yet completed the program.
Frequency of collection – Every year.
Frequency of review – Every year.
How collected and from whom – Career Planning provides data on the number of co-ops
offered and the number of permanent positions offered after the co-op. Dr. Corwin, the
co-op coordinator, performs an assessment of the employer surveys.
Benchmarks – The goal is for every student to have the opportunity to participate in a co-
op. The benchmark is for at least one-third of the graduates to have done a co-op.

The department strongly encourages students to gain practical experience through
summer employment and co-op experiences. The chart below would suggest that few
students are able to do so when in fact, essentially all of the students who graduate from
the program have completed a meaningful work experience in computer science, a co-op,
or an undergraduate research experience prior to graduation. The number of co-op
students reflects (1) the student must pay for three credits to participate in a co-op and
many students choose not to do so and (2) the student must be willing to do advanced
planning and have all co-op paperwork completed prior to starting work. Again, many
students fail to do so. A survey of students in Senior Design in Fall and Spring 2012-
2013 showed that 85% of the students in the class already had significant off-campus
work experience in computer science through co-op, summer employment, or part-time
employment. If industry-sponsored on-campus projects are included in the count, 100%
of the students had industry experience prior to graduation.

51

The co-op report is an important piece of objective data from a key constituent. The
informal feedback from employers who hire our students is also extremely positive.

AY Total A’s B’s C’s D’s F’s W

2006-07 3 2 1

2007-08 5 2 2 1

2008-09 4 2 1 1

2009-10 2 1 1

2010-11 8 8

2011-12 5 2 3

2012-13 3 3

Table 4.12: Summary of co-op grades (based on employer evaluations)

9. Undergraduate Research Involvement

Type of measurement – Objective. The faculty track the number of students involved in
undergraduate research each year.
Frequency of collection – Every year.
Frequency of review – Every year.
How collected and from whom – Collected from faculty members who direct
undergraduate research.
Benchmarks – The goal is for all students to have the opportunity to participate in
undergraduate research to encourage them to pursue graduate school. However, given
that only a small percentage of students go on to graduate school, the benchmark is to
have at least as many students participate in undergraduate research as continue to
graduate school each year. This is approximately three students per year.

Table 4.13: Summary of undergraduate research participation

The data suggests that fewer students are participating in undergraduate research,
prompting the faculty to consider whether this was a concern or not. A comparison with
the numbers of students on competition teams shows an increased interest in the team

0

5

10

15

20

Students

Students

52

opportunities. Projects like the UAV team and the Robotics team have significant
research components and are attracting students who would otherwise have participated
in undergraduate research. One of the goals for the undergraduate research offering is to
encourage students to consider graduate school. The UAV team and Robotics team are
accomplishing this as effectively as undergraduate research. A number of students
continue to explore topics of individual interest each year, and the faculty are satisfied
that all students who wish to participate in a research project have the opportunity to do
so. The spike in participation in 2009-2010 was due to “Team Bob” an undergraduate
team funded by the NSF through the AMP Center to build web tools for running the
center.

10. Placement rates/ Starting Salaries

Type of measurement – Objective.
Frequency of collection – Every year.
Frequency of review – Every year.
How collected and from whom – Collected by the Career Planning Office.
Benchmarks – The goal is 100% full employment with an average salary comparable to
the national average. Given that some students are place bound, that is, they need to
work in a particular place, and that location is often a small town in South Dakota, a
realistic benchmark is 85% placement. Given the low salaries in South Dakota and the
fact that about half of our graduates remain in the state, the benchmark is that the average
salary for all graduates will be 80% of the national average.

AY # Grads/
#reporting

Military/
Other

Graduate
school

Industry Total % Placement Average
starting salary

2006-07 17/17 2 3 11 16 94% $55,881

2007-08 14/13 1 2 10 13 93% $56,423

2008-09 16/15 0 4 11 15 94% $55,425

2009-10 14/13 1 6 7 13 100% $57,000

2010-11 12/11 0 4 8 12 100% $55,100

2011-12 20/20 0 4 16 20 100% $68,646

AY In SD Outside SD Average
Salary

National average
salary

Percentage of
National Average

2006-07 5 6 $55,881 $53,396 105%

2007-08 1 9 $56,423 $60,416 93%

2008-09 8 3 $55,425 $61,467 90%

2009-10 3 4 $57,000 $61,112 93%

2010-11 5 3 $57,100 $66,084 86%

2011-12 5 11 $68,646 $64,400 106%

Table 4.14: Placement percentages and starting salaries

53

The charts demonstrate that the program is meeting its benchmarks relative to placement and
starting salaries. The placement figures are often affected by a lack of reporting. Informal
evidence suggests that computer science graduates have achieved 100% employment since 2007.
The salary data is provided by the Career Planning Office and is not separated into in-state
versus out-of-state offers, but knowledge of local offers suggests that students who leave the
state are receiving substantial offers. A point of pride advertised by the university is that the
average starting salary for an SDSM&T graduate is greater than the average starting salary for a
Harvard graduate ($62,696 for SDSM&T versus $54,100 for Harvard). Tuition at SDSM&T is
roughly one-quarter that of Harvard.

54

Assessment Instruments

Program Outcomes

Annual
Assessment

Report MFT IAB

Course-
Embedded

Assessments
Capstone

Project

Senior
Exit

Interviews

Outstanding
Recent
Grad

Awards

Student
Competition
Involvement

Co-op
Reports

Undergrad
Research

Involvement

Placement
Rates/Starting

Salaries

1. possess a strong
foundation in the software
development process;

yearly yearly
every

2
years

every 2
years

yearly yearly yearly yearly yearly

2. be able to solve problems
using a variety of
programming languages
and have extensive
experience with at least one
high-level language;

yearly yearly
every

2
years

every 2
years

yearly yearly yearly yearly

3. have a background in
computer hardware and
experience with a variety of
operating systems;

yearly yearly
every

2
years

every 2
years

4. possess an extensive
background in mathematics
and an appreciation of the
scientific method;

yearly
every 2
years

 yearly yearly yearly

5. have an understanding of
the theoretical foundations
of computing;

Yearly yearly
every

2
years

every 2
years

 yearly

6. have developed effective
communication skills and
have experience working
with teams;

Yearly
every 2
years

yearly yearly yearly yearly yearly yearly yearly

7. possess an
understanding of
professional, ethical, legal,
security and social issues
and responsibilities.

Yearly
every 2
years

yearly yearly yearly

Table 4.15: Summary of assessment instruments, frequency of collection, and mapping to program outcomes

55

B. Continuous Improvement

Describe how the results of evaluation processes for the student outcomes and any other
available information have been systematically used as input in the continuous improvement
of the program. Describe the results of any changes (whether or not effective) in those cases
where re-assessment of the results has been completed. Indicate any significant future
program improvement plans based upon recent evaluations. Provide a brief rationale for
each of these planned changes.

The continuous improvement process is driven by the Annual Assessment Report and the
annual faculty evaluation process. Since 2007, the department has written an annual report
detailing changes to the program, citing motivations for the changes, and evaluating changes
made in previous years. Copies of these reports are available in the binder labeled
“Computer Science Annual Assessment Reports” and online at
http://www.mcs.sdsmt.edu/abet. Annual faculty evaluations are not available, but the course-
embedded assessments that are part of that review are available in the binder labeled
“Course-Embedded Assessment” and online at the URL listed above.

Numerous changes, large and small, have been made to the program in the past six years.
Following are detailed descriptions of the major changes made in the areas of assessment,
faculty, and curriculum that were motivated by departmental assessment activities. The
instrument that identified the issue, the response, and the evaluation of the response are
provided as examples of the continuous process of “closing-the-loop” that is an integral part
of the departmental assessment process.

For each of the items listed, an assessment instrument triggered a review, data was collected,
options were considered with input from our constituents, a decision was implemented, and
the results were reviewed.

Two significant changes to the program, the move from 128 to 120 credit hours for the
degree and the new administrative structure, are discussed in the Overview section of this
document. The departmental response to these externally-initiated changes is also described
there. However, evaluating the new curriculum will be a critical component of departmental
assessment activities for the next few years.

56

 1. Changes to the assessment process.

How identified: IAB, Focused Curriculum Review.

Actions taken:

As noted in Section 2: Program Objectives, the department has a process for reviewing and
refining program objectives. A similar process is in place for reviewing all assessment
instruments, the programmatic outcomes, the course-specific outcomes, and the mapping
between course outcomes and program outcomes.

(a) Review of program outcomes – The IAB meets every two years, and the first order of
business is to review the program’s Mission Statement, Program Objectives, and Program
Outcomes. The IAB is routinely asked to address all issues through the lens of two
questions: (1) where is industry going and (2) how well positioned is SDSM&T to take
advantage of these new directions. In 2010, the IAB felt that database coverage was
insufficient in the program and encouraged the department to add database as a
programmatic outcome. The growth in web programming, e-commerce, and mobile
applications were compelling arguments to add a program outcome directed at strengthening
database coverage. The list as published in 2010 is below.

1. have a strong foundation in the software development process;

2. be able to read and write program code in a variety of programming languages and
have extensive experience with at least one high-level language;

3. have experience in programming for and using a variety of computer operating
systems;

4. possess problem solving and algorithm development skills;

5. have a strong understanding of the theoretical foundations of computing;

6. have a strong background in computer hardware;

7. has the knowledge to produce effective conceptual and physical database
systems;

8. possess an extensive background in computer-related mathematics;
9. have an appreciation of the scientific method;

10. have developed and practiced effective communication skills;

11. have experience working in teams;

12. understand and respect the professional standards of ethics expected of a
computer scientist;

13. have an appreciation for the societal/ global impact of computing.

Table 4.16: Program outcomes 2010

When the IAB met in 2012, they were again asked to consider the program outcomes. Many
of the same people were present, and, after a long discussion, the group proposed removing
the database outcome and rewording the other outcomes to produce a leaner, simpler list.
They reiterated that database was a critical component of the curriculum but was not on the
same level as theory or mathematics. The proposed list, adopted by the department in
October 2012, is presented below.

57

1. possess a strong foundation in the software development process;

 Comment: unchanged

2. be able to solve problems using a variety of programming languages and have extensive
experience with at least one high-level language;

 Comment: problem solving should be tied to programming

3. have a background in computer hardware and experience with a variety of operating
systems;

 Comment: this reflects the shift in hardware emphasis to systems

4. possess an extensive background in mathematics and an appreciation of the scientific
method;

 Comment: all mathematics is computer-related.

5. have an understanding of the theoretical foundations of computing;

 Comment: unchanged except to remove “strong.” Modifier was unnecessary.

6. have developed effective communication skills and have experience working with teams;

 Comment: teaming requires communication

7. possess an understanding of professional, ethical, legal, security and social issues and
responsibilities.

 Comment: use ABET wording. Is an improvement over current wording.

Table 4.17: Program outcomes 2012 and rationale for each change

Program outcomes are reviewed every two years and perhaps it is the nature of a rapidly-
changing discipline that the program outcomes need adjustment in every review cycle.
While it is doubtful that the current set of outcomes will remain static for more than a few
years, the process is in place to manage the necessary changes and adapt as the discipline
evolves.

(b) Addition of the annual assessment report. This instrument was motivated by preparation
for the ABET visit six years ago. It provides a snapshot of the state of the department at the
end of each year and serves as a vehicle for recording collected assessment data. The faculty
finds this to be a useful mechanism for storing the “departmental memory” and collecting
information necessary for both HLC and ABET accreditation. The content has changed
slightly throughout the past six years, but the basic format has served the department well.
This is now a mature instrument that is central to the departmental assessment activities.

(c) Replace course evaluations with course-embedded assessments. In 2010, the department
re-evaluated its assessment of individual courses and how they contribute to the
programmatic outcomes as part of an assessment “tune-up.” The instrument in use at the
time was student evaluations. The comments could be useful, but often the results were too
tied to individual performance in the class to provide meaningful insight into potential
changes for a course. The Curriculum Committee decided to substitute course-embedded
assessments as the mechanism of choice for individual course reviews. The format for a
course-embedded assessment was defined, standards articulated, and a schedule set for
reviews in each course. Details on how these are generated, the content, and the benchmarks
established are provided in the description of course-embedded assessments above. With the
exception of Robotics and Theory of Computation, a course-embedded assessment has been
done on every class in the curriculum. Summer of 2013 was the first opportunity to consider
the aggregated results.

58

The initial reaction to the information generated from the course-embedded assessment data
is positive, but this is not a mature process and likely to evolve over the next three years.
The Curriculum Committee review of the process found the ability to aggregate multiple
inputs to a single outcome to be useful, but multiple years of data must be collected before
clear evidence exists to direct curriculum changes. As noted above, the Curriculum
Committee will re-evaluate the move to three hardware courses, consider increasing Linux
coverage in CSC 300, and collect additional data on strengthening mathematics coverage
with the next round of course-embedded assessments.

(d) Comprehensive review and reformulation of course outcomes. In 2011, the department
was forced to consider how the curriculum could transition from 128 credits to 120 credits.
The focused curriculum review that year concentrated on that task, but, as a consequence, all
course content and all course outcomes were reconsidered. The task-specific outcomes were
replaced with higher-level achievements. The Curriculum Committee reviewed the changes
in course outcomes and, in some cases, shared the changes with students in their courses.
Students responded positively to a shift from the “laundry-list” approach to broader
outcomes.

2. Changes to the curriculum

How identified: IAB, Senior Exit Interviews, student discussion groups, industry feedback
(employers, recruiters, co-op), Advising Survey, FCR. The FCR includes comparison to the
ACM/IEEE Computer Science Curriculum (2008 revision). The next review will consider
the proposed Computer Science Curriculum 2013 currently in development. All the major
constituents (students, faculty, industry, and alumni) are important contributors to curriculum
revisions.

 Actions taken:

A comprehensive list of differences between the curriculum of 2007 and that of 2013 is
present in Section 4: Curriculum. This discussion focuses on the assessment tools that
motivated the changes, the steps taken, and the evaluation of the results.

(a) CS elective offerings

Three suggestions for improving electives offerings were identified by the senior exit
surveys and the IAB: add an elective in networking, add an elective in mobile computing,
and publish a two-year rotation of elective offerings well in advance to facilitate
scheduling.
1. Networking – this course has been added to the elective offerings and will be offered

for the first time in Spring 2014. An assessment of the course will be performed in
summer 2014.

2. Mobile Computing – this course has been added to the elective rotation and will be
offered for the first time in Fall 2013. An assessment of the course will be performed
in Spring 2014.

3. Rotation – Staffing shortages have made it difficult to establish and follow an elective
rotation. Given the current stability, the curriculum committee was able to publish
the following elective rotation schedule to the students in Fall 2012. At the semi-
annual departmental “advising day”, held April 2, 2013, students were enthusiastic
about the number, content, and scheduling of the elective offerings. The negative

59

comments were that we can only offer courses every other year which prevents some
students from taking particular electives. Program enrollment would need to increase
substantially to offer current electives more frequently. The alternative, offering
fewer electives more frequently, was not viewed as a reasonable alternative by the
students.

 Even Spring (e.g. S14) Even Fall (e.g. F14)

Theory of Computation Parallel

Artificial Intelligence Robotics

Networks Graphics

Probabilistic Robotics*

Odd Spring (e.g. S15) Odd Fall (e.g. F15)

Security Cryptography

Image Processing Robotics

Mobile Computing Computer Vision (CS/CENG)

Robot Planning*

 * indicates 7xx course, only open to select undergraduates

Table 4.18: Elective course offering schedule

(b) Science and Mathematics electives
Feedback from alumni through recruiters and the IAB motivated the department to relax
the rigid requirements on math and science courses. The science requirement now allows
a student to take two semesters of a lab science chosen from a list of courses approved by
the program. Only University Physics is required. The new flexibility enables broader
opportunities for graduates in bio-tech and the geosciences, two growth areas in South
Dakota. All science courses approved for the CS program are required courses for
majors in the specified discipline. Similarly, replacing the Differential Equations
requirement with a math elective was motivated by students expressing a desire to be
better prepared for Cryptography by taking Abstract Algebra. The statistics course
designed for CS majors was replaced by the statistics course required for Math majors to
reflect the program’s philosophy that CS majors should take out-of-major courses that
count in the major for those disciplines.

(c) Drop HUM 375
This action was taken to address student concerns expressed in the senior exit interviews
and in student opinion surveys in Senior Design. Humanities 375, Computers in Society,
was originally designed to meet the needs of the CS program and primarily focused on
ethics. The course has become a popular elective for many majors, and the content has
expanded to address issues of interest to a wider audience. Many of these new topics did
not meet the needs of our program. It was also noted that a discussion of many ethical
questions requires technical knowledge which is better suited for coverage in computer
science courses. For these reasons, the curriculum committee voted to respond to student

60

input and drop HUM 375 as a required course. Coverage of ethics was increased in the
CS curriculum, particularly in Senior Design, and is now done in the context of computer
science; a feature that students felt was not emphasized in HUM 375. Table 4.17 lists
the required courses where the “soft skills” enumerated in Enabled Student
Characteristics (a) – (k) are systematically evaluated. Elective offerings reinforce these
skills as well.

 Freshman Sophomore Junior Senior

Globalization CSC 250 Various
electives

CSC 465/467
Various
electives

Ethical/social
responsibility

CSC 110
CSC 150
CSC 250

CSC 314 CSC 465/467

Communication ENGL 101 ENGL 279 ENGL 289
CSC 470

CSC 465/467

Legal CSC 314 CSC 470 CSC 465/467

Teaming CSC 250 CSC 300 Various
electives

CSC 456
CSC 465/467

Various
electives

Table 4.19: Coverage of soft skills in computer science courses

(d) Add CSC 110/111
This change was motivated by the FCR and by feedback from advising. CSC 110
(1 credit) is a course that focuses on college survival and an overview of the field of
computer science. Many freshmen do not have a sense of the broad array of career
options open to them in their chosen field and can be discouraged by the difficulty of
learning their first programming language. The course has only been offered one time,
but student feedback was positive with the suggestion of even greater emphasis on career
opportunities.

CSC 111 (2 credits) is an optional course designed to give students with no experience a
more gentle introduction to programming. Unfortunately, the state of South Dakota will
no longer require a computing class for high school graduation effective 2013-2014. The
CS program is being proactive in addressing the almost-certain reduction in computing
experience that entering freshmen will have within the next two years. Historically, the
completion rate in CSC 150 in Spring semesters, when many underprepared students take
the course, is typically around 70% as noted in Table 4.18. Many of these students
indicated in the department advising sessions that CSC 150 (CS 1) was too large a first
step into programming. In addition, the prerequisite or co-requisite of Calculus I for CS I
blocks many students from taking that course until their second, or possibly third,
semester. CSC 111 was designed to allow students to take a computer science class in

61

their first semester and take smaller steps learning programming. Of the 11 students who
successfully completed CSC 111, only five were eligible to continue on to CSC 150 due
to the mathematics co-requisite. Of those five, three earned a grade of “B” and two
earned a grade of “F”. The course-embedded assessment from the first offering of that
class showed students struggled with Python but felt the course was worthwhile. The
students recommended a lab experience to accompany the lectures, and such a lab will be
added starting in Fall 2013.

CSC-150

Term Count A B C D F

(% D or

Better)

2009SP 85 11 17 25 10 22 74.1%

2009FA 103 25 33 22 12 11 89.3%

2010SP 135 21 30 48 17 19 85.9%

2010FA 99 19 14 27 6 33 66.7%

2011SP 142 33 35 25 12 37 73.9%

2011FA 149 31 37 36 17 28 81.2%

2012SP 142 20 32 38 7 45 68.3%

Total 855 160 198 221 81 195 77.2%

Percent 19% 23% 26% 9% 23%

Table 4.20: Grades in CSC 150

3. Changes to individual courses

How identified: Course-embedded assessments, Focused Curriculum Reviews, and the IAB.
Other inputs motivated the curriculum-wide review, notably the change to 120 credit hours,
but a collection of small changes were identified and implemented to remove redundant
coverage, ensure coverage of emerging topics, and respond to student and industry input.

 Actions taken:

(a) Require Graphical User Interfaces with Object-Oriented Programming (GUI/OOP). This
course was initially offered as an elective, but an FCR in conjunction with the IAB in
2008 recommended that OOP coverage be strengthened in the curriculum. Initial
coverage is provided in CS2 (CSC 250) and additional coverage is provided in
Programming Languages (CSC 461). However, an entire course devoted to GUI & OOP
solidifies the principles and provides the depth industry expects from our graduates. This
change also allowed Programming Languages to shift from 4 credits to 3 credits. This
has had a positive influence as assessed in Senior Design. Teams are able to work on a
greater variety of industry projects as a result of increased proficiency with GUI & OOP.

(b) Introduce databases earlier in the curriculum. The IAB recommended in 2010 that
students see an introduction to databases before the end of the sophomore year. An
assignment using MySQL was added to Data Structures in Fall 2012. The students found
the assignment challenging and interesting, but the time required to incorporate the
necessary background meant other topics had to be dropped. Database Design (CSC 484)

62

is now a prerequisite to Senior Design, ensuring that students get exposure to databases
before their senior year. The next FCR will discuss alternatives for early introduction of
databases.

(c) Increase experience with software engineering tools. The IAB recommended
incorporating software engineering tools earlier in the curriculum, particularly prior to
Senior Design. The use of source code control such as SVN, project management
software such as Trello, additional emphasis on testing capabilities in programming
environments such as Visual Studio, and agile development methodologies, were
discussed in Data Structures and incorporated into Software Engineering. The impact of
the change to Software Engineering will be determined in Fall 2013 when those students
participate in Senior Design. The expectation is that teams will progress on their projects
faster than in previous semesters. This will be assessed in May 2014.

(d) Increase presentation opportunities for students. Surprisingly, this was recommended by
the student group that met with the IAB. Students working on research or projects
outside of normal coursework have the option of presenting at the Department
Colloquium Series and the Undergraduate Research Symposium which was created in
2010 to recognize excellence in undergraduate research across campus. Two or three
students take advantage of these opportunities each year. Since 2010, Dr. Jeff McGough
has been moving the Senior Design experience to a more professional level by requiring
teams to work with an external client and by requiring participation in the campus-wide
Senior Design Fair. These two changes have significantly increased the number, level,
and quality of presentations required of students prior to graduation. In spring 2013, the
Software Engineering students were required to present their projects to an external
audience for the first time to prepare them for Senior Design.

(e) Multi-semester projects. The IAB felt that the senior-design experience should extend a
full year. The senior exit survey confirmed that students also wanted the option of
working on more complex projects and working on projects that continue from one year
to the next. The curriculum committee adopted a two-semester senior design sequence
and moved Software Engineering to the second semester of the junior year. Previously,
Software Engineering was the first semester of the senior year and Senior Design was the
second semester. Students started their projects in Software Engineering, but little
progress was made until Senior Design due to the need to learn the Software Engineering
material.

Currently, Software Engineering is a prerequisite for Senior Design making a three-
semester sequence of project work. The tools and techniques needed for Senior Design
are covered in Software Engineering allowing students to immediately focus on their
projects. This does create scheduling challenges for some students but advisors remind
students every semester to look at the prerequisite chain and plan accordingly.
Typically, one student per year is in a scheduling bind and these students are exclusively
transfer students or students who have changed majors. The greater challenge is keeping
the juniors out of Senior Design because the students are very eager to enroll in the
course.

63

Extensive involvement from industry partners such as Innovative Systems has made the
senior design experience a realistic work experience. An employee of Innovative
Systems, Brian Butterfield, is assigned to the department to help manage projects in
Senior Design and Software Engineering, and bring current industry practices into the
classroom.

Students have also been encouraged to do projects that support the competition teams
such as Lunabotics and UAV which provide the experience of working on multi-year,
multi-disciplinary projects. Project evaluations from Innovative Systems plus feedback
from the Senior Design Fair reviewers show a marked increase in senior design project
quality over the past three years. This was a positive change that the department will
continue. Senior Design projects are available for review at
http://www.mcs.sdsmt.edu/abet.

4. Changes to faculty and staff

How identified: IAB, Focused Curriculum Review

 Actions taken:

Changes to the faculty are noted in Section 6: Faculty. This section describes the
assessment process in place for determining the composition of the faculty. The number of
faculty is driven by external budget factors, but the department has always enjoyed the
support of the administration. The number of vacancies in the department for the past five
years was a result of many market forces, low salaries, a geographic location that is not
desirable to many candidates, abrupt departures for personal reasons, and a temporary re-
assignment to address institutional needs. The budget always allowed for full staffing, and
we are now at full strength.

The number of faculty and the areas of expertise are evaluated every year.

 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013

Full-time
(tenure-
track)

5.5 a

5 b

7

5.5 c

4.5 c

6.5 d

Full-time
(instructor)

2 2 1 1 1 1

Part-time 2 1 1 3 2 1

a Wei left mid-year to take a job in industry
b Corwin and Logar were on Sabbatical Spring 2009
c Logar served as Dean of Graduate Education 2010-2012
d Karlsson joined in January 2013

Table 4.21: Faculty in the computer science program

64

The number of faculty is certainly critical to the operation of the program. An evaluation of
department needs through a focused curriculum review and input from the IAB established
both the number of faculty needed to deliver a quality curriculum and the areas of expertise
needed in the new hires. The eight full-time faculty members committed to the 2013-2014
academic year is the strongest cohort the program has enjoyed in the past decade and is
capable of delivering the strongest curriculum the program has offered in a decade. While
the quality of the program did not suffer during the lean years of 2010-2012, the strength
going forward has fostered a renewed sense of excitement among the faculty.

C. Additional Information

Copies of any of the assessment instruments or materials referenced in 4.A and 4.B must be
available for review at the time of the visit. Other information such as minutes from
meetings where the assessment results were evaluated and where recommendations for action
were made could also be included.

Binders containing assessment materials can be found with the course display materials and
online at http://www.mcs.sdsmt.edu/abet.

