Research@Mines - by Subject
Entrepreneurs

Mines Professor Wins NSF Grant to Study Consumer Behavior Patterns for Next-Generation Smart Grid

Dr. Long Zhao, an assistant professor of electrical engineering and the director of the Smart Grid and Energy Research Lab at Mines, is working on new ways to incorporate human behavior patterns into the design of next generation energy grids.

The development of a “smart grid” is a hot topic in the energy industry. The basic idea is that modern technologies can assist in routing electricity efficiently and economically from the power being generated to the areas where it’s in demand. Smart grids enable power from multiple sources, such as wind farms, rooftop solar panels, hydroelectric dams and large coal-fired power plants. A part of the smart grid is a little like a set of traffic signals that help move power where and when it’s needed; more power can be generated and distributed when demand is high and electricity flow can be reduced or sent into next-generation storage devices when demand is low.

Long Zhao, Ph.D., assistant professor of electrical engineering and the director of the Smart Grid and Energy Research Lab at Mines, says there is a great deal of effort underway right now to build the technology and infrastructure needed to run smart grids, but he says one thing is missing from current research. “We need to study the human factor. The most important part of the equation is people, and we are trying to understand human behavior to help build the most robust and fully functional smart grid models,” Zhao says.

The National Science Foundation is funding Zhao’s research with a grant totaling $198,740.00 over the next two years.. The research will analyz...

Last Edited 8/1/2023 03:45:41 PM [Comments (0)]

South Dakota Mines Forges New Partnership with Peruvian University thanks to 100,000 Strong in the Americas Innovation Fund

Dr. David Dixon, a South Dakota Mines professor in the Karen M. Swindler Department of Chemical and Biological Engineering, stands with Ryan Rowlands, director of Public Diplomacy Office in the Bureau of Western Hemisphere Affairs at the U.S. Department of State, on an early February visit to the U.S. Chief of Mission’s Residence in Bogotá, Colombia.

South Dakota Mines and the Universidad Peruana de Ciencias Aplicadas in Lima, Peru, (UPC Peru) were awarded a grant from the 100,000 Strong in the Americas Innovation Fund to build a partnership that includes a student exchange that builds technical, intercultural and soft-skills training that are needed to improve water quality in Peru.

This program will increase student and faculty collaboration, mobility and cross-cultural skills in the U.S. and Peru. It will also hone student skills via a water sanitation project for families who lack water services in the Lima district of Villa María del Triunfo, Peru.

Fog Catcher SystemCapstone design student teams and faculty from both universities will work together virtually and in-person on implementation of a fog catcher system that collects water from the air to be used for domestic purposes, irrigation of orchards and the implementation of a waste-water treatment system to be re-used for irrigation. At Mines, multidisciplinary teams of students from chemical engineering, civil and environmental engineering and other departments will be invol...

Last Edited 6/28/2023 08:17:15 PM [Comments (0)]

Mines Joins Research Collaboration to Develop Spray-On Bioplastics for Use in Farming

Tanvi Govil, a doctoral student at Mines, helped discover a microbe that eats corn stalks and produces environmentally friendly bioplastic without costly pre-treatments. This patent-pending breakthrough technology, developed at Mines’ CNAM-Bio Center, is a key component in the BioWRAP project.

South Dakota Mines researchers are part of a new $6 million grant from the National Science Foundation (NSF) to develop bioplastics for use in agriculture over the next four years.

The project, called Bioplastics with Regenerative Agricultural Properties, or BioWRAP, includes a research team at Mines working alongside a principal investigator at Kansas State University and researchers at the University of Nebraska-Lincoln.

Traditional specialty crop production, like organic agriculture, often use petroleum-based plastic sheets to cover the ground. Conventional plastics leave microplastic residues which contaminate the environment and increase stormwater runoff. This project aims to reduce the use of plastics, herbicides, fertilizers and associated environmental impacts in agricultural production by creating an all-in-one bioplastic system that can better manage weeds, add nutrients to soils, improve soil and plant health, and save water.

“This is exciting research to see unfold on campus as it can have a major benefit for farmers in South Dakota and across the nation. Kudos to Mines researchers for seeking solutions that are both cost saving for our ag producers and health...

Last Edited 9/13/2023 06:15:49 PM [Comments (0)]

Mines Team Develops Virtual Reality Hazard Awareness Training Program

Clint Kling, a doctoral graduate student in the Department of Mining Engineering and Management at South Dakota Mines, is shown here testing a virtual reality training system he helped develop to improve safety in industrial settings.

Underground and surface mines can be hazardous places, so when it comes to safety training in the mining profession, the old saying “practice makes perfect” holds true. To improve hazard safety instruction, a team at South Dakota Mines has spent the past year developing a virtual reality (VR) training module that mimics a mining environment.

“We are using new technologies combined with neuroscience to help people learn faster and more effectively,” says Clint Kling, a mining engineering doctoral graduate student who is currently working on the project under the guidance of Associate Professor Purushotham Tukkaraja, Ph.D., in collaboration with the company Motive.io. The research is funded by the United States Department of Labor, Mine Safety and Health Administration (MSHA) with a grant of $100,000.

The VR hazard awareness training is designed for new and inexperienced miners and will be available in English or Spanish. It will be conducted alongside the already existing MSHA training program at South Dakota Mines, the local mine sites, and will also be used in MSHA’s refresher training courses. The team plans to develop this program at the local level to establish good results before a national rollout. The researchers are also taking their ideas to the marketplace. They are ready to collaborate with any industry partners such as mining, construction, or general industry to develop...

Last Edited 6/1/2021 03:47:42 PM [Comments (0)]

Research Developed at South Dakota Mines Could Lead to Cure for Osteoarthritis

South Dakota Mines Ph.D. student Ram Saraswat works on research being done to help find a cure for osteoarthritis. The research has led to the creation of the company CellField Technologies.

South Dakota Mines research team has developed technology – and established a subsequent startup company – that could be a key to finding a cure for osteoarthritis.

WoodScott Wood, Ph.D., an assistant professor in the NanoScience and NanoEngineering Program, and Ph.D. student Ram Saraswat lead the research and development of the nanoscience technology now utilized by their startup, CellField Technologies. “We’re excited about the potential future of the technology and the company,” Wood says. “We hope it will be a gamechanger in osteoarthritis research.”

Osteoarthritis, sometimes called degenerative joint disease, is the most common form of arthritis. Most often it occurs in the hands, hips and knees. Osteoarthritis develops when the cartilage within a joint begins to break down, causing pain, stiffness and swelling. More than 32.5 million adults in the United States suffer from osteoarthritis, and current treatments offer little more than temporary pain control, Wood says. 

Wood says that for hundreds of years, doctors have considered...

Last Edited 2/23/2023 07:11:57 PM [Comments (0)]

South Dakota Mines receives $1.3 Million Grant for New Scanning Electron Microscope to Benefit Research and Industry

South Dakota Mines is installing a new Scanning Electron Microscope in the university’s Engineering and Mining Experiment Station.

South Dakota Mines is installing a new Scanning Electron Microscope (SEM) in the university’s Engineering and Mining Experiment Station (EMES) thanks to a $1.3 million grant from the National Science Foundation. The new microscope is just one of many state-of-the-art scientific instruments inside the recently expanded EMES which serves high-tech industry alongside university researchers across the state.

The powerful SEM microscope is a centerpiece of the EMES. It allows researchers to perform high resolution imaging, chemical analysis and sample manipulation for various materials at scales ranging down to 100,000 times smaller than the width of a human hair. The new microscope is a critical resource for a wide variety of research across multiple disciplines.

“The SEM is the most heavily used research instrument on campus,” says Grant Crawford, Ph.D., the director of the Arbegast Materials Processing and Joining Laboratory at Mines and an associate professor in the Department of Materials and Metallurgical Engineering.

The new SEM is equipped with a focused ion beam that dramatically expands its capability over the old system. The ion beam allows researchers to extract samples for separate analysis and cr...

Last Edited 1/19/2021 04:07:49 PM [Comments (0)]

The Quest to Control the Voxel and the 3D Printing Revolution to Come

Travis Walker, Ph.D., holds an example of a 3D printed item made with two different materials. He and Katrina Donovan, Ph.D., say this object is a large-scale example of the kind of 3D printed materials now possible at scales smaller than a human hair.

Imagine camouflage that renders a subject almost invisible; prosthetic limbs that look and feel like real appendages; smartphone battery power that’s embedded throughout the thin fabric of your clothing; windows that direct light to different parts of the room throughout the day. All of these ideas and much more may be possible with a new age of material science that is now unfolding. Researchers at the South Dakota School of Mines & Technology are learning to manipulate the basic properties of innovative materials to enable revolutionary new products.

“We’re really trying to enhance voxel-level engineering,” says Travis Walker, Ph.D., assistant professor of chemical and biological engineering at South Dakota Mines.

So, what’s a voxel? In photography, the sharpness of an image depends on the number of pixels per inch. More pixels in an image yield more vivid detail.

Move into three dimensions, and resolution is not determined by pixels, but voxels. Like digital photography, the resolution in 3D printing technology keeps getting better. Today, researchers are working to manipulate single voxel sizes that are smaller than the diameter of a human hair. This effort means very fine and detailed 3D printing.

The next evolution in 3D printing may involve the ability to change the properties of a material, voxel by voxel. Just as many different colored pixels make...

Last Edited 10/3/2023 03:35:17 PM [Comments (0)]

2D Materials, Biofilm and Microbial Research at SD Mines Brings in $32 Million in National Science Foundation Grants

Govind Chilkoor, Ph.D., an SD Mines research scientist, examines a biofilm on a steel sample following its exposure to corrosive bacteria. Dr. Chilkoor is working to develop new ultrathin two-dimensional (2D) coatings that resist microbial corrosion. His research is one component of a newly announced $20 million NSF grant titled “Building on the 2020 Vision: Expanding Research, Education and Innovation in South Dakota.”

In the past three years, the National Science Foundation (NSF) has awarded  $32 million in funding for research led by faculty at South Dakota School of Mines & Technology that expands human understanding of the microbial world. Much of the research focuses on the environment microbes occupy when they attach to surfaces and create what is commonly known as a biofilm.

The broad range of studies on microbes and biofilms, funded by these grants, has a wide potential for applications across many sectors of industry and society including energy generation, new medicines, wastewater purification, agriculture, corrosion resistance, new materials and reduction of greenhouse gas emissions.

The research effort of the newly announced $20 million NSF grant titled “Building on the 2020 Vision: Expanding Research, Education and Innovation in South Dakota” will be led by researchers at SD Mines, SDSU and USD. The funding was awarded through the South Dakota Established Program to Stimulate Competitive Research (SD EPSCoR) and the South Dakota Board of Regents. The state of South Dakota is providing $4 million in matching funds for the grant. The Governor’s office of Economic Development and Board of Regents are providing $3 million and there is ...

Last Edited 10/17/2023 05:18:47 PM [Comments (0)]

Composite Bridge Winners Use Lightweight, Strong, Inexpensive Material Developed at SD Mines

Krishnan Veluswamy, a Ph.D. student in the Materials Engineering and Science Program at SD Mines, holding the bridge his team built and his 2018 SAMPE International University Leadership Experience Award.

South Dakota School of Mines and Technology students took home second place in the Society for the Advancement of Material and Process Engineering (SAMPE) 2018 Student Bridge Contest, by designing a bridge weighing just 12.5 ounces that can carry a 2,000-pound load.

The competition, held in Long Beach, Calif., pitted SD Mines researchers against 70 teams from 30 universities from around the world. Teams were tasked to design, build and test a 24-inch-long structural composite bridge using fiber reinforced plastics and high-performance materials. The annual event challenges teams to make bridges that carry a specified load while also being as lightweight as possible. The Mines bridge placed second in the inaugural year of the sandwich beam category at SAMPE’s bridge contest.

“The SAMPE bridge competition is a fantastic opportunity for students to develop some hands-on composite fabrication skills and to see how the process side of composites engineering truly impacts their final performance,” says Eric Schmid, SD Mines bridge team member and SAMPE North America Young Professionals committee chair. “SAMPE provides an excellent platform for students to demonstrate their capabilities, and the chance to attend the SAMPE conference and bridge competition really gives students a great view of how important compo...

Last Edited 10/2/2023 10:29:01 PM [Comments (0)]

Engineering an End to Back Pain

Marit Johnson, a PhD candidate at SD Mines, is focusing her research on intervertebral discs in the lower back.

There is a good chance you are sitting down right now. It’s possible you’ve been sitting all day, or maybe you’ve even been sitting every day for the last few decades.

“There is a trend in the 21st century that 80 percent of our jobs require sitting, and it’s even more so when you include leisure time,” says Marit Johnson (CE 96), a PhD candidate in biomedical engineering at SD Mines.

You may guess that spending all this time in a chair is not so good for your health. In fact, research is now showing prolonged sitting may contribute to lower back pain. “Eighty percent of us will experience back pain in our lifetime,” says Johnson. "If your job requires long hours in a chair, back pain can be a real issue."

Johnson’s research is focused on the intervertebral discs of the lower back. These discs are in between the vertebrae, or bones, of the spine, and their softer tissue provides cushion and flexibility. They are key components of a healthy and functional spine.

Research shows that intervertebral discs need to exchange fluid to maintain a healthy environment, similar to how our bodies need breathing to exchange carbon dioxide with oxygen for our survival. “Typically, when we wake up in the morning we’re taller,” says Johnson. At night when we sleep the discs pull in fluid and they expand. As the day goes on,...

Last Edited 7/30/2018 07:35:16 PM [Comments (0)]

SD Mines Helps Keep Two of the World’s Most Sensitive Dark Matter Experiments Clean

Radon reduction researchers pictured with the machine they designed are (from left to right) SD Mines physics graduate student Joseph Street, Richard Schnee, Ph.D., along with lab technicians David Molash and Christine Hjelmfelt.

South Dakota School of Mines & Technology is helping to ensure highly sensitive underground dark matter experiments are free of radon that could contaminate the results. SD Mines researchers are building a radon mitigation system at SNOLAB in Canada and at the Sanford Underground Research Facility (SURF) in Lead, S.D.

The team, led by Richard Schnee, Ph.D., professor and head of the physics department at SD Mines, is building machines that filter out radon particles to produce ultra-pure air needed for the SuperCDMS experiment in SNOLAB and for the LZ (LUX-ZEPLIN) experiment in SURF.  The team is also helping ensure the parts used to build the experiments are relatively free of radon.

“Our detectors need very low levels of radon,” Schnee says. While the radon levels at the 4850 Level at SURF are safe for humans, they are too high for sensitive experiments like LZ, which go deep underground to escape cosmic radiation, Schnee explains. “We will take regular air from the facility and the systems will reduce the levels by 1,000 times or more.”

The system in SURF will be installed in the...

Last Edited 2/25/2019 11:04:47 PM [Comments (0)]

SD Mines Researchers Work to Develop Latent Fingerprint and DNA Collection System

The Latent Fingerprint Extraction Team includes (from left to right) Sierra Rasmussen, graduate student; Jon Kellar Ph.D., Mines; William Cross Ph.D., Mines; John Hillard, undergraduate student; John Rapp, graduate student; Stanley May, Ph.D., USD; Jeevan Meruga, Ph.D., SecureMarking, LLC.

Researchers at South Dakota School of Mines & Technology and the University of South Dakota in Vermillion have received a grant of more than $840,000 from the National Institute of Justice to research the development of a handheld device that will read fingerprints and potentially collect DNA. The device, which might look like a handheld bar code reader or be attached to a smartphone, uses nanoparticles and infrared light to detect latent fingerprints on surfaces where fingerprint extraction has traditionally been difficult.    

“We’re designing the whole system,” says Bill Cross, Ph.D., a professor in the Department of Materials and Metallurgical Engineering at SD Mines. “This also could potentially connect via the internet to various fingerprint databases and produce real time results at the scene of the crime or back in the forensic lab.” 

Traditional development of fingerprints has limitations due to several factors, such as the surface where fingerprints are found. Tools with neon colored handles, for example, don’t work well with some current methods for enhancing fingerprints because the texture and color of the handle can interfere with the chemicals and wavelengths of light used to visualize the fingerprint.

...
Last Edited 10/3/2023 04:28:37 PM [Comments (0)]

Killing Anthrax

Lori Groven, PhD, an assistant professor in the chemical and biological engineering department at SD Mines, is pioneering new ways to fight biological weapons.

In the weeks following the September 11th attacks, a series of letters containing anthrax spores arrived at media outlets and the offices of US Senators Tom Daschle and Patrick Leahy. The acts of bioterrorism gripped the nation in confusion, anger, and fear. Scores were hospitalized and five people died. It was a senseless tragedy. But, it could have been much worse.

“Ten grams of anthrax spores could wipe out all of Washington, DC, and the surrounding area,” says Lori Groven, (BS ChE, MS ChE, PhD Nanoscience and Nanoengineering). “Biological weapons are scary for everybody, because it takes so little to do so much damage,” she adds. The minimum lethal dose for anthrax is estimated to be 5-10,000 spores, and one gram of anthrax contains well over a trillion spores. 

Groven is a research scientist and assistant professor in the chemical and biological engineering department at Mines. She and her team are part way through a five-year half-million-dollar grant from the Defense Threat Reduction Agency. The research has led to new materials and methods for combating bioterrorism.

One challenge Groven and her team have faced is the instability of the chemicals currently used to neutralize biological weapons. These compounds, or biocides, are made up mostly of a fuel and oxidizer (iodate) powder. They have a very short shelf life. “This stuff doesn’t age very well," says Groven. “If you put it out on the counter,...

Last Edited 8/29/2023 09:01:41 PM [Comments (0)]

SD Mines Researchers Hope to Use Sanford Lab Extremophiles to Create Low-Cost Renewable and Biodegradable Polymers

Courtney Carlson, a senior majoring in Chemical Engineering at SD Mines (right) and researcher Navanietha Krishnaraj Rathinam, Ph.D., (left) work in the Chemical and Biological Engineering and Chemistry (CBEC) building at SD Mines. Carlson and Krishnaraj Rathinam are using benchtop reactors in the lab to perform CNAM-Bio research that seeks to optimize and scale-up the manufacturing of biopolymers from lignocellulosic biomass using extremophiles. The center is a scanning electron microscope image of the bacteria the research team are studying.

A team of researchers with the Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center (CNAM), led by David Salem, Ph.D., at the South Dakota School of Mines & Technology are using microbes that were discovered deep underground in the Sanford Underground Research Facility (SURF) in an attempt to make low-cost plastics that are renewable and biodegradable.

“Most commercial polymers, or plastics are petroleum based which is a non-renewable resource,” says Salem. The team is working to find ways to mass manufacture low-cost plant based plastics and composites. “A problem with bio-based polymers is they are expensive, and one goal of this center is to use genetically engineered microbes to help reduce the cost of manufacturing these kinds of plastics,” says Salem. “Another goal is to engineer the properties of the biopolymers and biocomposites to serve a wide range of commercial applications.”

There is a huge potential for new green-based manufacturing jobs in the area if the center succeeds in developing mass manufacturing techniques for turning plants into low-cost bio-based polymers.

“The top ten petroleum based polymers make up about a $500-billion global market,” says Salem. “These biopolymers potentially can cover the whole range of properties of those.”

A group, led by Rajesh Sani, Ph.D., from SD Mines’ Department of Chemical & Biological Engineering, have isolated th...

Last Edited 6/28/2019 01:53:45 PM [Comments (0)]

Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Vanderboom Laboratory for Entrepreneurial Research (V-LAB)
Rapid City, SD  57701

(605) 394-2493