Research@Mines - by Subject
SURF

South Dakota Mines Creates New Center for Sustainable Solutions

Sadie Tornberg, who is completing her masters in atmospheric and environmental sciences at South Dakota Mines, spent part of her summer in the backcountry of Montana and Idaho studying water quality on the Kootenai River. Research like this is one example of many that fall under the new Center for Sustainable Solutions at Mines.

South Dakota Mines has created a new multidisciplinary Center for Sustainable Solutions. The center will be a hub for research and development around sustainability including water quality, emerging contaminants, agriculture, infrastructure, carbon capture, biofuels, bioplastics, environmental stewardship and more.

“As society faces increasingly complex problems, providing sustainable solutions requires integrative partnerships and approaches that build convergence of many disciplines with research and support for stakeholders at all levels,” says Lisa Kunza, Ph.D., an associate professor in the Department of Chemistry, Biology and Health Sciences and the director of the new center at Mines.

In the last five years leading up to establishing the Center for Sustainable Solutions, there have been nearly 50 faculty and researchers from eight departments on campus participating in the efforts. “As an institution of higher education, it is imperative to have many graduate and undergraduate students trained in the collaborative environment that the Center for Sustainable Solutions provides while tying the innovative efforts to support the needs of the people,” says Kunza.

The center will help serve the needs of a wide range of partners, from assisting the Department of Defense (DoD) in mitigating emerging ...

Last Edited 8/29/2023 08:57:58 PM [Comments (0)]

South Dakota Mines Students Help Design and Build Photon Monitoring System for DUNE

South Dakota Mines physics doctoral student Jairo Rodriguez and mechanical engineering masters student Kole Pickner test optical fibers by submerging them in liquid nitrogen to determine how well they will perform in DUNE.

Students at South Dakota Mines are leading the way in calibrating the sensors that will detect and track tiny flashes of light inside the massive Deep Underground Neutrino Experiment (DUNE) that will be constructed at the Sanford Underground Research Facility (SURF).

DUNE will advance the study of the elusive ghost particle known as the neutrino. The scale of DUNE is mind boggling. It’s one part of the Long Baseline Neutrino Facility (LBNF), hosted by Fermi National Accelerator Laboratory.  A particle accelerator at Fermilab in Illinois will shoot a neutrino beam more than 800 miles straight through the Earth to a DUNE particle detector 4,850 feet below ground at SURF. The detector is composed of seven-story-high tanks filled with liquified argon that must be kept at a temperature around 300 below zero °F. The neutrinos bombarding the tanks will occasionally hit an argon atom, causing a tiny flash of light. The nature of the light generated by these interactions will give researchers a new understanding of the mysterious neutrinos and help answer several fundamental questions about the nature of matter and the evolution of the universe.  

The DUNE collaboration includes more than 1,400 people from 200 universities and institutions across more than 30 nations. I...

Last Edited 6/29/2023 03:28:20 PM [Comments (0)]

South Dakota Mines Students and Faculty Assist in Successful Startup of LUX-ZEPLIN Dark Matter Detector at Sanford Underground Research Facility

Mines physics graduate student Jack Genovesi runs cables above data acquisition racks during upgrades on the LZ experiment at the 4850 level of SURF.

Deep below the Black Hills of South Dakota in the Sanford Underground Research Facility (SURF), an innovative and uniquely sensitive dark matter detector—the LUX-ZEPLIN (LZ) experiment, led by Lawrence Berkeley National Lab (Berkeley Lab)— has passed a check-out phase of startup operations and delivered first results. South Dakota Mines physicists played an integral role in LZ by creating technology that reduced the amount of background radiation that could skew the experiment’s results. They are continuing to make important contributions by calibrating and analyzing the experiment.

The take home message from this successful startup: “We’re ready and everything’s looking good,” said Berkeley Lab Senior Physicist and past LZ Spokesperson Kevin Lesko. “It’s a complex detector with many parts to it and they are all functioning well within expectations,” he said.

In a paper posted online, LZ researchers report that with the initial run, LZ is already the world’s most sensitive dark matter detector. LZ Spokesperson Hugh Lippincott of the University of California Santa Barbara said, “We plan to collect about 20 times more data in the coming years, so we’re only getting ...

Last Edited 8/4/2022 07:52:00 PM [Comments (0)]

Researchers Evaluate SURF Extremophiles

Earlier this summer, RESPEC researcher Brian Bormes and Dr. Gokce Ustunisik from Mines took initial observations of the core sample on the 4100 Level of Sanford Underground Research Facility. Photo courtesy Gokce Ustunisik

This article was written by Erin Lorraine Broberg at the Sanford Underground Research Facility and republished here with permission. Find the original article here.

When first learning about the Sanford Underground Research Facility (SURF), it can help to imagine it as a vast, inverted apartment complex. Experiments move into the large, underground caverns. And SURF provides the usual amenities: electricity, running water, elevator maintenance, radon mitigation, liquid nitrogen deliveries and, of course, shielding from cosmic rays.

But amidst the facility’s 370 miles of tunnels, shafts and drifts, there is one group of tenants who pay no rent at all. At SURF, billions of microorganisms—known to biologists as “extremophiles” for their ability to carve out a living far from sunlight and with limited oxygen—live deep underground.

This summer, a research group from South Dakota Mines (Mines) retrieved a core sample—a smooth cylinder of grey rock—from 4,100 feet below of the surface of SURF. Under a microscope, it wriggled with SURF’s hardiest inhabitants.

From this sample, the research group hopes to find a microbe with a distinct set of characteristics that could help store excess greenhouse gases deep underground.

...

Last Edited 9/30/2021 02:35:45 PM [Comments (0)]

South Dakota Mines Professor Reflects on IceCube’s 10th Anniversary and Discoveries at the South Pole

Dr. Xinhua Bai, associate professor of physics at South Dakota Mines shown here at the South Pole (seated lower right) during his research in 1998. Dr. Bai is among a group of scientists whose work helped establish the international IceCube Collaboration, which is celebrating its 10th anniversary this week.

Ten years ago, the IceCube Neutrino Observatory fully opened its eyes for the first time, the eyes that allow curious scientists to “see” signals from passing astrophysical neutrinos: mysterious, tiny, extremely lightweight particles created by some of the most energetic and distant phenomena in the cosmos. IceCube is a gigantic three-dimensional detector for high energy cosmic rays, whose origins remained unknown, after they were discovered over a century ago.

South Dakota Mines associate professor of physics, Xinhua Bai, Ph.D., is among the original “dreamers,” which included a few dozen scientists, who helped start the international IceCube Collaboration. Today, the diverse group of researchers includes over 350 scientists from 53 institutions in 12 countries and five continents.

“I was extremely lucky to be one of the early scientists on this collaboration. After I received my Ph.D., driven by my curiosity, I started as a winter over scientist for the Antarctic Muon And Neutrino Detector Array and the South Pole Air Shower Experiment  in 1998.” Bai says. “The...

Last Edited 5/13/2021 04:23:50 PM [Comments (0)]

South Dakota Mines Leads New Big Data Effort to Probe Mysteries of the Universe with Observatory at the South Pole

IceCube winter-over scientist Yuya Makino walks to work at the IceCube Lab at the South Pole. This new NSF project, led by South Dakota Mines, uses data from this lab and other detectors with cutting-edge big data techniques to push the very frontiers of astronomy. Photo courtesy of Y. Makino, IceCube/NSF.

South Dakota Mines received a $6 million National Science Foundation (NSF) grant to enhance big data processing and astronomical capabilities of the world’s largest neutrino observatory, IceCube, located at the geographic South Pole. The research will attempt to answer a fundamental question that has puzzled scientists for more than a century regarding the origin of subatomic cosmic particles that carry visible energy. 

The four-year project titled “RII Track-2 FEC: The IceCube EPSCoR Initiative (IEI) - IceCube and the Data Revolution” brings together scientists from South Dakota Mines, University of Alabama, University of Alaska Anchorage, University of Delaware, University of Kansas and University of Nebraska-Lincoln. The team of researchers will work to solve challenges facing Multi-Messenger Astronomy (MMA) – this new form of astronomy integrates the various types of signals coming in from outer-space to paint the most-clear picture possible of our universe. The project is funded through NSF EPSCoR (Established Program to Stimulate Competitive Research). EPSCoR’s mission is to advance excellence in science and engineering research and education in its jurisdictions.

“Astronomy has enormous i...

Last Edited 12/15/2020 09:54:21 PM [Comments (0)]

Radio-Pure Nearly a Mile Down: Keeping Dark Matter Detectors Clean and Accurate

Eric Morrison a Ph.D. graduate student at South Dakota Mines in front of the air purifier used with LZ.

If you want to breathe some of the most radioactive free, or “radio-pure,” air on earth, go 4,850 feet underground to the site of the LZ (LUX-ZEPLIN) experiment at the Sanford Underground Research Facility (SURF).

A research team at South Dakota School of Mines & Technology has built an air purifier that has reduced the radon in the air to about 50 times lower than typical outdoor air. The team is helping to ensure success for one of the world’s most sensitive dark matter experiments — LZ. Dark matter has never been directly observed. But it is believed to make up 85% of all the matter in the universe. The mystery of dark matter is considered to be one of the most pressing questions in particle physics. The LZ experiment is run deep underground where it will be protected from high-energy particles, called cosmic radiation, which can create unwanted background signals. But underground environments pose other challenges. They are often higher in radon, which can also impede sensitive experiments.

“Usually the concentration of radon underground is quite high, but the equipment that has been installed in SURF reduces radon background by a factor of a thousand,” says Richard Schnee, Ph.D., the physics department head at...

Last Edited 2/3/2020 09:16:58 PM [Comments (0)]

2D Materials, Biofilm and Microbial Research at SD Mines Brings in $32 Million in National Science Foundation Grants

Govind Chilkoor, Ph.D., an SD Mines research scientist, examines a biofilm on a steel sample following its exposure to corrosive bacteria. Dr. Chilkoor is working to develop new ultrathin two-dimensional (2D) coatings that resist microbial corrosion. His research is one component of a newly announced $20 million NSF grant titled “Building on the 2020 Vision: Expanding Research, Education and Innovation in South Dakota.”

In the past three years, the National Science Foundation (NSF) has awarded  $32 million in funding for research led by faculty at South Dakota School of Mines & Technology that expands human understanding of the microbial world. Much of the research focuses on the environment microbes occupy when they attach to surfaces and create what is commonly known as a biofilm.

The broad range of studies on microbes and biofilms, funded by these grants, has a wide potential for applications across many sectors of industry and society including energy generation, new medicines, wastewater purification, agriculture, corrosion resistance, new materials and reduction of greenhouse gas emissions.

The research effort of the newly announced $20 million NSF grant titled “Building on the 2020 Vision: Expanding Research, Education and Innovation in South Dakota” will be led by researchers at SD Mines, SDSU and USD. The funding was awarded through the South Dakota Established Program to Stimulate Competitive Research (SD EPSCoR) and the South Dakota Board of Regents. The state of South Dakota is providing $4 million in matching funds for the grant. The Governor’s office of Economic Development and Board of Regents are providing $3 million and there is ...

Last Edited 10/17/2023 05:18:47 PM [Comments (0)]

Lasers Light the Way to New Technologies

Steve Smith, Ph.D., professor and director of Nanoscience and Nanoengineering at the SD Mines, works with student Laura Brunmaier.

This year, the Nobel Prize in Physics was awarded to three individuals for “groundbreaking inventions in the field of laser physics”: Arthur Ashkin with Bell Laboratories in the United States; Gerard Mourou of the École Polytechnique, Palaiseau, France, and the University of Michigan, Ann Arbor; and Donna Strickland from the University of Waterloo in Canada.

Steve Smith, who earned his Ph.D. doing research in a National Science Foundation Science and Technology Center directed by Mourou at the University of Michigan, was pleased to hear Mourow was receiving a share of the Nobel Prize.

“It’s nice he received a part of this prize. But it also gives acknowledgement to a lot of people in different areas of laser physics. That’s usually how it works—one person gets the prize but there are hundreds of people doing similar work that is very impactful, and this elevates their research as well,” said Smith, who is a professor and director of Nanoscience and Nanoengineering at the South Dakota School of Mines & Technology (SD Mines).

At Deep Talks: Nobel Day, Smith will discuss the topics relating to this year's Nobel Prize in Physics, including Mourou’s work in the field of laser physics and how it has impacted a variety of scientific and technologica...

Last Edited 11/27/2018 04:51:18 PM [Comments (0)]

Remote Monitoring Stations Established at SD Mines in Build Up to DUNE

SD Mines physics graduate students and faculty at the remote monitoring station on campus include (left to right) Bhubnesh Lama, Luke Corwin, Ph.D., David A. Martinez Caicedo, Ph.D., Jairo Rodriguez and Michelle While.

Researchers in the Department of Physics at the South Dakota School of Mines & Technology are setting up new remote monitoring stations that allow them to take part in the international experiments MicroBooNE and NOvA.  Both world-class experiments are investigating properties of neutrinos, one of nature’s most elusive particles. Both projects are also led by Fermi National Accelerator Laboratory, which is funded by the U.S. Department of Energy.

Neutrinos rarely interact with other particles; they can pass through the entire planet as if it were empty space. In order to study such particles, scientists need to create an intense beam of them and send them continuously through a large detector for long periods of time. Because of the need for intense beams, these experiments are said to take place at the Intensity Frontier of particle physics.

These experiments are on the cutting edge of particle physics research.  They are part of a series of sophisticated neutrino research projects that include the Deep Underground Neutrino Experiment (DUNE), hosted by Fermilab, which will see a massive particle detector built a mile b...

Last Edited 11/21/2018 12:04:42 AM [Comments (0)]

Mines Researchers Explore Hydraulic Fracturing to Expand Geothermal Energy

Liangping Li, Ph.D., (left) and Bill Roggenthen, Ph.D., (right) shown here in the EGS Collab at the 4850 level of the Sanford Underground Research Facility.

The use of hydraulic fracturing (or fracking as it’s commonly called in the press) has been a topic of contention in the oil and gas industry. However, researchers believe fracking can also be used at depth in hard rocks that contain no oil or gas to improve geothermal energy production. The process could enhance the use of the earth’s own heat as a source of clean energy.

Liangping Li, Ph.D., an assistant professor in the Department of Geology and Geological Engineering at the South Dakota School of Mines & Technology, has received an award from National Science Foundation (NSF) for his research entitled “Inverse Methods of Hydraulic Fracturing for Enhanced Geothermal Systems in a Deep Mine.” Li is working alongside projects already underway at the Sanford Research Facility (SURF) including kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) and the Enhanced Geothermal Systems (EGS) project. Hydraulic fracturing research at SURF uses no chemicals, so unlike some fossil fuel fracking operations, the fracking fluid used in these ...

Last Edited 7/12/2022 08:50:31 PM [Comments (0)]

Powerful Bugs: Harnessing the Electric Eels of the Microbial World

“We’re studying the electric eels of the microbial world,” says Navanietha Krishnaraj, Ph.D., a research scientist in the Chemical and Biological Engineering department at SD Mines. - Photo Credit NOAA

Researchers at the South Dakota School of Mines & Technology are studying ways to harness electricity generated by a unique set of microbes. 

 

“We’re studying the electric eels of the microbial world,” says Navanietha Krishnaraj, Ph.D., a research scientist in the Chemical and Biological Engineering department at SD Mines.

 

Researchers, such as Venkata Gadhamshetty, Ph.D., an associate professor in the Civil and Environmental Engineering department at SD Mines, and his team including Namita Shrestha, Ph.D., are working on maximizing the efficiency of what’s known as bioelectrochemical systems. By understanding the right combination of microbes and materials it’s possible to harness clean energy for widespread use in various applications.

 

Possible outcomes of this research include new ways to generate electricity and treat solid waste during NASA space missions, the ability for a wastewater treatment plants to help generate electricity while turning effluent into clean water, a new way to clean saline wastewater generated in oil drilling operations, and better ways to turn food waste, like tomatoes and corn stover into e...

Last Edited 9/28/2023 08:15:07 PM [Comments (0)]

Ballooning in the Shadow of the Moon

This image, courtesy of the South Dakota Solar Eclipse Balloon Team, shows the moon's shadow crossing the Nebraska Panhandle during the Great American Eclipse of 2017.

At 10:35 a.m. on August 21, 2017, in a field in front of a small Nebraska Panhandle farmhouse, a team consisting of SD Mines students, Black Hills area high school students, teachers and community members, meticulously followed a set of steps they had practiced many times before. Payloads were carefully secured, batteries checked, and scientific instruments turned on and tested. Soon, helium was coursing through a hose from tanks in the back of a pickup truck into an eight-foot-tall balloon laid out on the soft grass.

Above the desolate cornfields and sandhills of northwestern Nebraska the moon was starting its path across the sun–the arc of its shadow racing across the country toward this team. The Great American Eclipse was underway.

The South Dakota Solar Eclipse Balloon Team had been working for two years to prepare for this one sliver in time. Their goal—to launch this balloon at the exact moment to loft the payload to an altitude of about 100,000 feet, under the moon’s shadow, during two minutes of totality. On board were video cameras, a radiation detector, GPS, and other scientific experiments. This project aimed to capture images and data from the eclipse. The radiation detector would help measure the flux of cosmic rays in the upper atmosphere as the moon obscured the sun. The video cameras would capture the circle of the moon’s shadow on the earth. The team designed and built some of ...

Last Edited 5/17/2018 09:53:34 PM [Comments (0)]

SD Mines Helps Keep Two of the World’s Most Sensitive Dark Matter Experiments Clean

Radon reduction researchers pictured with the machine they designed are (from left to right) SD Mines physics graduate student Joseph Street, Richard Schnee, Ph.D., along with lab technicians David Molash and Christine Hjelmfelt.

South Dakota School of Mines & Technology is helping to ensure highly sensitive underground dark matter experiments are free of radon that could contaminate the results. SD Mines researchers are building a radon mitigation system at SNOLAB in Canada and at the Sanford Underground Research Facility (SURF) in Lead, S.D.

The team, led by Richard Schnee, Ph.D., professor and head of the physics department at SD Mines, is building machines that filter out radon particles to produce ultra-pure air needed for the SuperCDMS experiment in SNOLAB and for the LZ (LUX-ZEPLIN) experiment in SURF.  The team is also helping ensure the parts used to build the experiments are relatively free of radon.

“Our detectors need very low levels of radon,” Schnee says. While the radon levels at the 4850 Level at SURF are safe for humans, they are too high for sensitive experiments like LZ, which go deep underground to escape cosmic radiation, Schnee explains. “We will take regular air from the facility and the systems will reduce the levels by 1,000 times or more.”

The system in SURF will be installed in the...

Last Edited 2/25/2019 11:04:47 PM [Comments (0)]

Growing Copper Deep Underground: SD Mines Plays Integral Role in Successful MAJORANA DEMONSTRATOR Experiment

Much of the experiment’s copper is processed underground to remove both natural radioactivity (such as thorium and uranium) and radioactivity generated above ground when cosmic rays strike the copper. Electroforming relies on an electroplating process that over several years forms the world’s purest copper stock. Ultrapure copper is dissolved in acid and electrolytically forms a centimeter-thick plate around a cylindrical stainless-steel mandrel. Any radioactive impurities are left behind in the acid. Here collaborator Cabot-Ann Christofferson of the South Dakota School of Mines & Technology measures the thickness of copper pulled from an electroforming bath. Credit: Sanford Underground Research Facility; photographer Adam Gomez

The collaborators working on the MAJORANA DEMONSTRATOR have published a study in the journal Physical Review Letters showing the success of the experiment housed in the Sanford Underground Research Facility (SURF). The success of the MAJORANA DEMONSTRATOR opens the door for the next phase of the experiment and sets the stage for a breakthrough in the fundamental understanding of matter in the universe. 

The experiment, led by the Department of Energy’s Oak Ridge National Laboratory, involves 129 researchers from 27 institutions and six nations. The South Dakota School of Mines & Technology was an integral part in facilitating the underground laboratory space at SURF and helped lead the effort to build the ultra-pure components needed to construct a successful experiment. 

“The goal was to demonstrate the feasibility and capability to build a larger one-ton experiment,”  says Cabot-Ann Christofferson, the Liaison and a Task Leader within the  MAJORANA Collaboration at the Sanford Underground Lab and an...

Last Edited 6/28/2018 07:05:55 PM [Comments (0)]

SD Mines Researchers Hope to Use Sanford Lab Extremophiles to Create Low-Cost Renewable and Biodegradable Polymers

Courtney Carlson, a senior majoring in Chemical Engineering at SD Mines (right) and researcher Navanietha Krishnaraj Rathinam, Ph.D., (left) work in the Chemical and Biological Engineering and Chemistry (CBEC) building at SD Mines. Carlson and Krishnaraj Rathinam are using benchtop reactors in the lab to perform CNAM-Bio research that seeks to optimize and scale-up the manufacturing of biopolymers from lignocellulosic biomass using extremophiles. The center is a scanning electron microscope image of the bacteria the research team are studying.

A team of researchers with the Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center (CNAM), led by David Salem, Ph.D., at the South Dakota School of Mines & Technology are using microbes that were discovered deep underground in the Sanford Underground Research Facility (SURF) in an attempt to make low-cost plastics that are renewable and biodegradable.

“Most commercial polymers, or plastics are petroleum based which is a non-renewable resource,” says Salem. The team is working to find ways to mass manufacture low-cost plant based plastics and composites. “A problem with bio-based polymers is they are expensive, and one goal of this center is to use genetically engineered microbes to help reduce the cost of manufacturing these kinds of plastics,” says Salem. “Another goal is to engineer the properties of the biopolymers and biocomposites to serve a wide range of commercial applications.”

There is a huge potential for new green-based manufacturing jobs in the area if the center succeeds in developing mass manufacturing techniques for turning plants into low-cost bio-based polymers.

“The top ten petroleum based polymers make up about a $500-billion global market,” says Salem. “These biopolymers potentially can cover the whole range of properties of those.”

A group, led by Rajesh Sani, Ph.D., from SD Mines’ Department of Chemical & Biological Engineering, have isolated th...

Last Edited 6/28/2019 01:53:45 PM [Comments (0)]

New Grant Funds Researched-Based Economic Development

Dr. Juergen Reichenbacher outside his clean room laboratory on campus.

A new state grant and matching commitments totaling $342,424 are bolstering research-based economic development at the South Dakota School of Mines & Technology.

The funds, including a $200,000 grant from the Board of Regents, are being used to buy scientific instruments for existing projects. Among them are two research endeavors at the Sanford Underground Research Facility (SURF) in nearby Lead. A third project expands on the university’s current success to commercialize a biomass liquefaction process.

Over the past decade, SD Mines has been supporting efforts at SURF to build a strong expertise and infrastructure toward synthesis of high-value organic products from biomass. 

Details on the three projects impacted by this new funding:

  • Development of a novel system reducing the radon concentration underground at the Sanford Lab, enabling future experiments in this facility. This project is being led by Dr. Richard Schnee, associate professor in the Department of Physics.
  • Development of two low-background detectors that will provide new capabilities important not only for planned underground physics experiments but also for industrial applications, especially in semiconductor and nuclear security sectors. This project is being led by Dr. Juergen Reichenbacher, assistant professor in the Department of Physics.
  • Selective liquefaction of lignin and biomass wa...
Last Edited 2/3/2017 04:23:18 PM [Comments (0)]

Strieder Leads Sanford Lab CASPAR Team in Unlocking Secrets of the Universe

Mines physicist Dr. Frank Strieder is the principal investigator on the CASPAR experiment at the Sanford Underground Research Facility.

In a cavern buried beneath a mile of rock at the Sanford Underground Research Facility, a School of Mines team has spent the last year assembling an accelerator that could alter the scientific world with quiet bursts of energy.

The Compact Accelerator System Performing Astrophysical Research (CASPAR) experiment hopes to understand the origins of the universe by mimicking nuclear fusion in stars, studying the smallest scale possible to understand the largest scale possible.

Led by South Dakota Mines’ Dr. Frank Strieder of the Department of Physics, the team of scientists includes researchers from the University of Notre Dame and the Colorado School of Mines, as well as seven Mines students—three doctoral students and four undergraduates. Strieder designed the 45-foot-long accelerator and spent a year purchasing or machining parts and then assembling them.

Data collection is expected to begin within the next month.

The idea behind the experiment is to generate the type of energy inside a star, allowing scientists to understand how stars were formed and where they are in their lifespan, which could lead to other discoveries about life in the universe.

One kilometer away inside another cavity of the sprawling deep underground laboratory, Ray Davis observed for the first time 50 years ago that neutrinos came from the sun. Davis earned the Nobel Prize for his discovery.

“We know bas...

Last Edited 11/3/2016 09:09:08 PM [Comments (0)]

Sani’s Study of Extremophiles Welcomes International Collaborators, Gains Recognition

Dr. Rajesh Sani and his students have been collecting samples from the deep biosphere of the Sanford Underground Research Facility nearly a mile below ground.

Dr. Rajesh Sani’s research on how microorganisms can survive in extreme environments could lead to the conversion of solid wastes into bioenergy and the development of efficient, cost-effective green technologies.

In recent months his ongoing efforts have welcomed international collaborators from India and have been highlighted in SCI’s international Chemistry & Industry (C&I) Magazine.

The School of Mines and Sani, of the Department of Chemical & Biological Engineering, are currently hosting researchers from India for a year-long collaborative study on extremophiles such as those found a mile below the earth’s surface at the Sanford Underground Research Facility (SURF). The Sanford Lab in nearby Lead is located in the former Homestake Gold Mine and has 370 miles of tunnels. Of those tunnels, just 12 miles are maintained to house world-class laboratories where international dark matter and neutrino experiments are being conducted.

Over the past decade Sani’s group has been looking for thermophiles that can naturally degrade and ferment cellulose and xylan, a polysaccharide found in plant cell walls.

The extremophiles isolated from SURF by Sani’s group will also be used as test subjects in a new NASA study.

Last Edited 11/3/2016 08:50:26 PM [Comments (0)]

Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Vanderboom Laboratory for Entrepreneurial Research (V-LAB)
Rapid City, SD  57701

(605) 394-2493