Bio-electrochemical technologies for solving food-water-energy nexus challenges in upper great plain region- A case study on efficient wastewater reuse

Namita Shrestha1, Govind Chilkoor1, Venkataramana Gadhamsheetty1

1Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology

Introduction to Upper Great Plain Region:
- Upper great plain region (UGP) includes the regions of South Dakota, Iowa, Montana, Nebraska, and North Dakota.
- UGP is a major exporter of food and energy and utilizing significant volumes of water and nutrient.
- Food production, and water and energy consumption are interdependent processes. For instance, conversion of grassland reduces ground water resources.
- The food-water-energy nexus in the UGP is currently influenced by the Bakken shale-oil boom, corn-ethanol production, coal mining, wind farms, and hydroelectric dams.
- It is important to balance the economics, technological innovation, and culture to sustain food-water-energy nexus in UGP.

Bakken Shale-oil Boom:
- Subsurface of the Williston Basin, underlying parts of Montana, North Dakota, Saskatchewan, and Manitoba.
- Bakken oil production increased from 150 thousand bbl/day in 2007 to 1350 thousand bbl/day in 2015.
- Hydraulic fracturing and horizontal drilling is used for oil extraction from impermeable formations. This process generates significant amount of produced and flowback water.
- Flowback waters is characterized with high total dissolved solids (~200,000 mg/L) and chemical oxygen demand (1200 mg/L).

Problem statement:
- Existing technology for backflow water treatment like thermal or membrane processes coupled with pretreatment is prone to fouling, also expensive and energy consuming.

Approach:
- A two-stage treatment for backflow water based on electrochemical processes followed by biological treatment for Bakken’s backflow water.

Bio-electrochemical technologies (BETs):
- The BETs uses specialized microbes called as anaerobic respiring bacteria (ARB).
- The ARBs can be used for simultaneous wastewater treatment, desalination, and electricity production.
- Examples of BETs are microbial fuel cells (MFCs), microbial electrolysis cells (MECs), and microbial desalination cells (MDCs).

A Case Study of Bio-electrochemical Technologies for Wastewater Reuse in Powerplant:

Water Energy Nexus:
- Power plants in the US consume ~40% of total freshwater withdrawals.
- Wastewater Treatment:
 - Energy: ~0.5-2.0 kWh/m3
 - Sludge Disposal: ~60% of total operating cost
- Energy-intensive wastewater treatment plants annually spends 4480 MW to treat wastewater.

Goals:
- Evaluate the municipal wastewater as the electron donor in the anode of MFCs.
- Examine the viability of MFCs/membranes to enable wastewater reuse (power plants).

Methodology:

Measurement Analysis:
- **pH**: pH meter.
- **Conductivity**:
 - **Conductivity Demand - Using spectrophotometer based on standard methods**.
 - **Ion measurement**:
 - Using atomic absorption spectrometer based on Standard methods.
- **Cyclic Voltametry**: Using Potentiostat.
- **Electrochemical Impedance analysis**: Using Potentiostat.

Results:
- **Chemical Oxygen Demand (COD) Removal**:
 - We achieved 90% COD removal in the Rapid City’s wastewater.

Summary:
- **Electrochemical Impedance**:
 - High impedance in wastewater (~6.7 kΩ cm²) than in acetate (~0.28 kΩ cm²).
 - Power production using wastewater (325 mW/m²) less than acetate (150 mW/m²).

Experimental Plan:

<table>
<thead>
<tr>
<th></th>
<th>Electron Donor</th>
<th>Electron Acceptor</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC1</td>
<td>Bakken Backflow water</td>
<td>Oxygen</td>
<td>100 mM</td>
</tr>
<tr>
<td>Control1</td>
<td>Artificial Salt water</td>
<td>Oxygen</td>
<td>100 mM</td>
</tr>
<tr>
<td>Control2</td>
<td>None</td>
<td>Oxygen</td>
<td>100 mM</td>
</tr>
</tbody>
</table>

Acknowledgement:
- We acknowledge the support from Electric Power Research Institute (EPRI) National Science Foundation CAREER award (NSF-EHR02) and partial support from NARSAD Award (NIMH38256) and Dr. James E. Kilham, Associate Professor, Civil and Environmental Engineering, Rensselaer Polytechnic Institute.