Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
Chemical and Biological Engineering

Growing Copper Deep Underground: SD Mines Plays Integral Role in Successful MAJORANA DEMONSTRATOR Experiment

Much of the experiment’s copper is processed underground to remove both natural radioactivity (such as thorium and uranium) and radioactivity generated above ground when cosmic rays strike the copper. Electroforming relies on an electroplating process that over several years forms the world’s purest copper stock. Ultrapure copper is dissolved in acid and electrolytically forms a centimeter-thick plate around a cylindrical stainless-steel mandrel. Any radioactive impurities are left behind in the acid. Here collaborator Cabot-Ann Christofferson of the South Dakota School of Mines & Technology measures the thickness of copper pulled from an electroforming bath. Credit: Sanford Underground Research Facility; photographer Adam Gomez

The collaborators working on the MAJORANA DEMONSTRATOR have published a study in the journal Physical Review Letters showing the success of the experiment housed in the Sanford Underground Research Facility (SURF). The success of the MAJORANA DEMONSTRATOR opens the door for the next phase of the experiment and sets the stage for a breakthrough in the fundamental understanding of matter in the universe. 

The experiment, led by the Department of Energy’s Oak Ridge National Laboratory, involves 129 researchers from 27 institutions and six nations. The South Dakota School of Mines & Technology was an integral part in facilitating the underground laboratory space at SURF and helped lead the effort to build the ultra-pure components needed to construct a successful experiment. 

“The goal was to demonstrate the feasibility and capability to build a larger one-ton experiment,”  says Cabot-Ann Christofferson, the Liaison and a Task Leader within the  MAJORANA Collaboration at the Sanford Underground Lab and an...

Last Edited 4/26/2018 01:35:44 PM [Comments (0)]

The Gas Cube – Turning Remote Base Waste Into Energy

The Gas Cube is a compact reactor that can turn waste into methane gas.

Cows, as many people know, have four stomachs. Cows also generate lots of methane.  So, if your goal is to describe a machine that turns food waste and cardboard into methane gas, the bovine digestive system is an analogy that makes some sense.  

“Our reactor is some ways a two-stomach cow,” says Jorge Gonzalez-Estrella, a post-doctoral research associate in the Chemical and Biological Engineering Department at Mines.

Gonzalez-Estrella is one of the researchers working on the Gas Cube project.  The semi-trailer-sized reactor is much larger than a cow, but it’s still portable. It’s one of the projects in development at Mines aimed at turning a range of remote base waste into energy. This is all thanks to a $4.8 million grant from the United States Air Force, $1.2 million of which funds the Gas Cube.  A remote Air Force Base can produce lots of waste. The Air Force seeks to save waste handling and fuel costs at mission-based remote bases. This is a challenge that the Gas Cube is designed to overcome. 

How does it work?  Back to the cow analogy. At the Gas Cube’s input, or mouth, a shredder grinds up the solid cardboard or food waste and deposits it in chamber number one. This is sort of like a cow chewing and swallowing its food. Then in that first chamber, or stomach number one, hydrolytic microorganisms break down the mix of food waste and cardboard into sugars, and fermenting microbes then break up those su...

Last Edited 4/26/2018 01:36:39 PM [Comments (0)]

Microscopy Trifecta Examines How Cells Engulf Nutrients, Viruses

As part of her doctoral research at the South Dakota School of Mines & Technology nanoscience and nanoengineering program, Amy Hor examines chemically fixed cells using correlated fluorescence and atomic force microscopy. She worked under the direction of professor Steve Smith. The collaborative research, which also involved microscopy teams from South Dakota State University and the National Institutes of Health, showed that membrane bending occurs at all stages of clathrin assembly.

Scientists have a better understanding of a mechanism that allows cells to internalize beneficial nutrients and not-so-beneficial viruses, thanks to collaboration among researchers from two South Dakota universities and the National Institutes of Health.           

South Dakota State University associate professor Adam Hoppe, South Dakota School of Mines & Technology professor Steve Smith and NIH scientists Justin Taraska and Kem Sochacki combined three unique types of microscopy to track how a protein called clathrin triggers cell membrane bending. They found that clathrin, which creates a honeycomb shaped scaffold on the cell membrane, has an unexpected amount of plasticity when pinching off small portions of the cell membrane. Their work was published in the Jan. 29, 2018, issue of Nature Communications.

Hoppe and Smith work collaboratively through the South Dakota BioSystems Networks and Translational Research (BioSNTR) center, which is funded through the South Dakota Research Innovation Center program and the National Science Foundation’s Established Program to Stimulate Competitive Research program. A greater understanding of how cells internalize material will help BioSNTR researchers working with Sioux Falls-based SAB Biotheraputics to develop new alternative treatments for influenza.

The contributions of NIH scientists Justin Taraska and Kem Sochacki were made possible through a federally fund...

Last Edited 4/26/2018 01:37:40 PM [Comments (0)]

Green Tech & Anti-Counterfeiting Efforts at Mines Aid Military

Mike Tomac, PhD student at South Dakota School of Mining & Technology, stands near a small-scale K-Span structure used to test the viability of adapting off-the-shelf solar technology to deployable structures for the Air Force at Tyndall Air Force Base, Florida. (Courtesy Photo)

Whether it’s ensuring that service men and women have hot water on deployments or preventing the distribution of dangerous counterfeit products, research developed at South Dakota of Mines & Technology - and strengthened through partnerships with the United States Air Force - is changing the future.   

In hot water

The Air Force Civil Engineer Center and SD Mines have focused efforts on bringing off-the-grid electricity and hot water to difficult deployment locations around the world. The research work is led by Ph.D. candidate Mike Tomac, Chemical and Biological Engineering professor David Dixon, Ph.D., and former Mines faculty member Butch Skillman.

Using equipment originally designed to heat residential pools, the project entails deploying kit-ready solar panels and water heating systems that could provide both 

Currently, structures that provide electricity and hot water during deployments are installed on an expeditionary electrical grid and serve as command centers, mess halls, maintenance facilities and more. The structures require fuel...

Last Edited 4/26/2018 01:39:48 PM [Comments (0)]

Killing Anthrax

Lori Groven, PhD, an assistant professor in the chemical and biological engineering department at SD Mines, is pioneering new ways to fight biological weapons.

In the weeks following the September 11th attacks, a series of letters containing anthrax spores arrived at media outlets and the offices of US Senators Tom Daschle and Patrick Leahy. The acts of bioterrorism gripped the nation in confusion, anger, and fear. Scores were hospitalized and five people died. It was a senseless tragedy. But, it could have been much worse.

“Ten grams of anthrax spores could wipe out all of Washington, DC, and the surrounding area,” says Lori Groven, (BS ChE, MS ChE, PhD Nanoscience and Nanoengineering). “Biological weapons are scary for everybody, because it takes so little to do so much damage,” she adds. The minimum lethal dose for anthrax is estimated to be 5-10,000 spores, and one gram of anthrax contains well over a trillion spores. 

Groven is a research scientist and assistant professor in the chemical and biological engineering department at Mines. She and her team are part way through a five-year half-million-dollar grant from the Defense Threat Reduction Agency. The research has led to new materials and methods for combating bioterrorism.

One challenge Groven and her team have faced is the instability of the chemicals currently used to neutralize biological weapons. These compounds, or biocides, are made up mostly of a fuel and oxidizer (iodate) powder. They have a very short shelf life. “This stuff doesn’t age very well," says Groven. “If you put it out on the counter,...

Last Edited 4/26/2018 01:40:45 PM [Comments (0)]

SD Mines Researchers Hope to Sanford Lab Extremophiles to Create Low-Cost Renewable and Biodegradable Polymers

Courtney Carlson, a senior majoring in Chemical Engineering at SD Mines (right) and researcher Navanietha Krishnaraj Rathinam, Ph.D., (left) work in the Chemical and Biological Engineering and Chemistry (CBEC) building at SD Mines. Carlson and Krishnaraj Rathinam are using benchtop reactors in the lab to perform CNAM-Bio research that seeks to optimize and scale-up the manufacturing of biopolymers from lignocellulosic biomass using extremophiles. The center is a scanning electron microscope image of the bacteria the research team are studying.

A team of researchers with the Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center (CNAM), led by David Salem, Ph.D., at the South Dakota School of Mines & Technology are using microbes that were discovered deep underground in the Sanford Underground Research Facility (SURF) in an attempt to make low-cost plastics that are renewable and biodegradable.

“Most commercial polymers, or plastics are petroleum based which is a non-renewable resource,” says Salem. The team is working to find ways to mass manufacture low-cost plant based plastics and composites. “A problem with bio-based polymers is they are expensive, and one goal of this center is to use genetically engineered microbes to help reduce the cost of manufacturing these kinds of plastics,” says Salem. “Another goal is to engineer the properties of the biopolymers and biocomposites to serve a wide range of commercial applications.”

There is a huge potential for new green-based manufacturing jobs in the area if the center succeeds in developing mass manufacturing techniques for turning plants into low-cost bio-based polymers.

“The top ten petroleum based polymers make up about a $500-billion global market,” says Salem. “These biopolymers potentially can cover the whole range of properties of those.”

A group, led by Rajesh Sani, Ph.D., from SD Mines’ Department of Chemical & Biological Engineering, have isolated th...

Last Edited 6/20/2017 10:39:43 AM [Comments (0)]

Sani’s Study of Extremophiles Welcomes International Collaborators, Gains Recognition

Dr. Rajesh Sani and his students have been collecting samples from the deep biosphere of the Sanford Underground Research Facility nearly a mile below ground.

Dr. Rajesh Sani’s research on how microorganisms can survive in extreme environments could lead to the conversion of solid wastes into bioenergy and the development of efficient, cost-effective green technologies.

In recent months his ongoing efforts have welcomed international collaborators from India and have been highlighted in SCI’s international Chemistry & Industry (C&I) Magazine.

The School of Mines and Sani, of the Department of Chemical & Biological Engineering, are currently hosting researchers from India for a year-long collaborative study on extremophiles such as those found a mile below the earth’s surface at the Sanford Underground Research Facility (SURF). The Sanford Lab in nearby Lead is located in the former Homestake Gold Mine and has 370 miles of tunnels. Of those tunnels, just 12 miles are maintained to house world-class laboratories where international dark matter and neutrino experiments are being conducted.

Over the past decade Sani’s group has been looking for thermophiles that can naturally degrade and ferment cellulose and xylan, a polysaccharide found in plant cell walls.

The extremophiles isolated from SURF by Sani’s group will also be used as test subjects in a new NASA study.

Last Edited 11/3/2016 02:50:26 PM [Comments (0)]