Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
Economic Development

Termite Mounds Hide Secrets to Sustainable Buildings of the Future

Andrea Surovek, Ph.D., a research scientist from SD Mines’ Department of Mechanical Engineering, standing next to a termite mound in Namibia.

South Dakota School of Mines & Technology has been awarded $475,000 from the National Science Foundation to study how termites construct mounds with the idea that humans might one day adapt the energy-efficient homebuilding techniques of the insects. The award is a follow-up to a previous grant by NSF of $300,000.

Mines faculty researchers spent time in the African country of Namibia to study the shape and function of termite mounds. The mounds are resilient and naturally energy efficient. Their intricate interior designs provide ventilation and temperature regulation throughout what can easily be a 15-foot-tall home for a single colony of 2 million termites. 

“An understanding of the natural processes involved in termite mound construction and function can be adapted to inform engineering applications related to the construction of man-made structures that require zero or minimal energy inputs,” said the NSF award letter.

Co-principal investigator Andrea Surovek, Ph.D., a research scientist from SD Mines’ Department of Mechanical Engineering, has lead research that examined hundreds of slices of a termite mound and has developed three-dimensional models of numerous mounds using ...

Last Edited 10/30/2018 03:21:47 PM [Comments (0)]

SD Mines Researchers Explore Hydraulic Fracturing to Expand Geothermal Energy

Liangping Li, Ph.D., (left) and Bill Roggenthen, Ph.D., (right) shown here in the EGS Collab at the 4850 level of the Sanford Underground Research Facility.

The use of hydraulic fracturing (or fracking as it’s commonly called in the press) has been a topic of contention in the oil and gas industry. However, researchers believe fracking can also be used at depth in hard rocks that contain no oil or gas to improve geothermal energy production. The process could enhance the use of the earth’s own heat as a source of clean energy.

Liangping Li, Ph.D., an assistant professor in the Department of Geology and Geological Engineering at the South Dakota School of Mines & Technology, has received an award from National Science Foundation (NSF) for his research entitled “Inverse Methods of Hydraulic Fracturing for Enhanced Geothermal Systems in a Deep Mine.” Li is working alongside projects already underway at the Sanford Research Facility (SURF) including kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) and the Enhanced Geothermal Systems (EGS) project. Hydraulic fracturing research at SURF uses no chemicals, so unlike some fossil fuel fracking operations, the fracking fluid used in these ...

Last Edited 11/5/2018 09:28:37 AM [Comments (0)]

Composite Bridge Winners Use Lightweight, Strong, Inexpensive Material Developed at SD Mines

Krishnan Veluswamy, a Ph.D. student in the Materials Engineering and Science Program at SD Mines, holding the bridge his team built and his 2018 SAMPE International University Leadership Experience Award.

South Dakota School of Mines and Technology students took home second place in the Society for the Advancement of Material and Process Engineering (SAMPE) 2018 Student Bridge Contest, by designing a bridge weighing just 12.5 ounces that can carry a 2,000-pound load.

The competition, held in Long Beach, Calif., pitted SD Mines researchers against 70 teams from 30 universities from around the world. Teams were tasked to design, build and test a 24-inch-long structural composite bridge using fiber reinforced plastics and high-performance materials. The annual event challenges teams to make bridges that carry a specified load while also being as lightweight as possible. The Mines bridge placed second in the inaugural year of the sandwich beam category at SAMPE’s bridge contest.

“The SAMPE bridge competition is a fantastic opportunity for students to develop some hands-on composite fabrication skills and to see how the process side of composites engineering truly impacts their final performance,” says Eric Schmid, SD Mines bridge team member and SAMPE North America Young Professionals committee chair. “SAMPE provides an excellent platform for students to demonstrate their capabilities, and the chance to attend the SAMPE conference and bridge competition really gives students a great view of how important compo...

Last Edited 8/14/2018 10:35:41 AM [Comments (0)]

Changing The Way Kosovo Mines

This group of Mines seniors took on a senior project evaluating Kosovo's mining industry and identifying ways to improve productivity.

What started as a senior design project could change the way Kosovo develops its country’s power.   

“This is very real-world,” says Andrea Brickey, Ph.D., associate professor in the SD Mines Mining Engineering and Management Department. “This design and plan is going to be shared with the mine management in Kosovo.”

Brickey assigned the senior design project to 10 of her SD Mines mining students after being contacted by a colleague, Hillary Smith, who had recently completed a fellowship in Kosovo with the U.S. State Department. The World Bank had recently backed Kosovo, a country in the Balkans region of Europe, in its plan to build a more efficient power plant. The United States has played a consulting role in helping the country improve its power capacity. With the power plant moving forward thanks to the World Bank backing, the next step was improving the country’s mining operations to feed the plant.

Currently, Kosovo gets 97 percent of its power from one lignite mine called the South Sibovc Coal Mine. These lignite mines are operated by the Kosovo Energy Company (KEK). Unfortunately, the mining technology, equipment a...

Last Edited 6/28/2018 01:04:20 PM [Comments (0)]

Green Tech & Anti-Counterfeiting Efforts at Mines Aid Military

Mike Tomac, PhD student at South Dakota School of Mining & Technology, stands near a small-scale K-Span structure used to test the viability of adapting off-the-shelf solar technology to deployable structures for the Air Force at Tyndall Air Force Base, Florida. (Courtesy Photo)

Whether it’s ensuring that service men and women have hot water on deployments or preventing the distribution of dangerous counterfeit products, research developed at South Dakota of Mines & Technology - and strengthened through partnerships with the United States Air Force - is changing the future.   

In hot water

The Air Force Civil Engineer Center and SD Mines have focused efforts on bringing off-the-grid electricity and hot water to difficult deployment locations around the world. The research work is led by Ph.D. candidate Mike Tomac, Chemical and Biological Engineering professor David Dixon, Ph.D., and former Mines faculty member Butch Skillman.

Using equipment originally designed to heat residential pools, the project entails deploying kit-ready solar panels and water heating systems that could provide both 

Currently, structures that provide electricity and hot water during deployments are installed on an expeditionary electrical grid and serve as command centers, mess halls, maintenance facilities and more. The structures require fuel...

Last Edited 4/26/2018 01:39:48 PM [Comments (0)]

SD Mines Energy Resources Initiative Builds Momentum as US Production Peaks

Nine SD Mines students join Energy Resources Initiative director Dan Soeder on a hydraulic fracturing operation during a visit to the Bakken oilfields of North Dakota. The trip was funded by Halliburton.

One of the primary goals of the South Dakota School of Mines and Technology’s Energy Resources Initiative (ERI) is to conduct research that improves the efficiency and reduces the environmental risks of producing fossil fuels while providing energy security for America.

While the country’s oil and gas industry has been in a down cycle, recent data shows US production is reaching a peak not seen since the 1970s due to increased development of shale oil and gas.  Dan Soeder, the new ERI director, is an industry expert on development of shale resources and reserves. Soeder is less than a year into his new position at SD Mines. He has spent this time quietly putting down roots to firmly establish the program. Soeder has been developing research projects, building relationships with industry and pursuing funding. The aim is for SD Mines to grow as a valuable industry resource, both in supplying future engineers for this sector and in providing solutions for efficient and safe oil and gas production.

Soeder left the U.S. Department of Energy last spring to become Mines’ first ERI director, bringing with him 30 years of experience as a hydrologist and a geologist, with a particular focus on shale gas, water resources, and sequestration of carbon dioxid...

Last Edited 6/28/2018 01:06:39 PM [Comments (0)]

Killing Anthrax

Lori Groven, PhD, an assistant professor in the chemical and biological engineering department at SD Mines, is pioneering new ways to fight biological weapons.

In the weeks following the September 11th attacks, a series of letters containing anthrax spores arrived at media outlets and the offices of US Senators Tom Daschle and Patrick Leahy. The acts of bioterrorism gripped the nation in confusion, anger, and fear. Scores were hospitalized and five people died. It was a senseless tragedy. But, it could have been much worse.

“Ten grams of anthrax spores could wipe out all of Washington, DC, and the surrounding area,” says Lori Groven, (BS ChE, MS ChE, PhD Nanoscience and Nanoengineering). “Biological weapons are scary for everybody, because it takes so little to do so much damage,” she adds. The minimum lethal dose for anthrax is estimated to be 5-10,000 spores, and one gram of anthrax contains well over a trillion spores. 

Groven is a research scientist and assistant professor in the chemical and biological engineering department at Mines. She and her team are part way through a five-year half-million-dollar grant from the Defense Threat Reduction Agency. The research has led to new materials and methods for combating bioterrorism.

One challenge Groven and her team have faced is the instability of the chemicals currently used to neutralize biological weapons. These compounds, or biocides, are made up mostly of a fuel and oxidizer (iodate) powder. They have a very short shelf life. “This stuff doesn’t age very well," says Groven. “If you put it out on the counter,...

Last Edited 4/26/2018 01:40:45 PM [Comments (0)]

$540,000 NSF Grant Boosts 6-12th Grade STEM Teaching Efficacy

Teachers at Mines this summer taking part in the SD-RET program.

Teachers in South Dakota now have the chance to work side-by-side with faculty at SD Mines and bring what they learn back to the classroom.

The Sustainable Development-Research Experience for Teachers (SD-RET) program helps integrate new engineering and science technologies into 6-12th grade classrooms in rural America. The program is thanks to a $543,466 grant from the National Science Foundation (NSF). It gives teachers new tools and resources to improve Science, Technology, Engineering and Math (STEM) curriculum aligned with state standards. The grant increases collaboration between South Dakota teachers, industry partners and Mines faculty..

The SD-RET program helps integrate new engineering and science technologies into 6-12th grade classrooms in rural America. The program is sponsored by a $543,466 grant from the National Science Foundation (NSF). It gives teachers new tools and resources to improve Science, Technology, Engineering and Math (STEM) curriculum aligned with state standards. The grant increases collaboration between South Dakota teachers, industry partners and Mines faculty.

“STEM education and research are a significant part of our mission and strategy, and therefore this NSF grant will have a significant impact on future education of South Dakota 6-12th grade students in scienc...

Last Edited 7/18/2017 02:34:48 PM [Comments (0)]

New Grant Funds Researched-Based Economic Development

Dr. Juergen Reichenbacher outside his clean room laboratory on campus.

A new state grant and matching commitments totaling $342,424 are bolstering research-based economic development at the South Dakota School of Mines & Technology.

The funds, including a $200,000 grant from the Board of Regents, are being used to buy scientific instruments for existing projects. Among them are two research endeavors at the Sanford Underground Research Facility (SURF) in nearby Lead. A third project expands on the university’s current success to commercialize a biomass liquefaction process.

Over the past decade, SD Mines has been supporting efforts at SURF to build a strong expertise and infrastructure toward synthesis of high-value organic products from biomass. 

Details on the three projects impacted by this new funding:

  • Development of a novel system reducing the radon concentration underground at the Sanford Lab, enabling future experiments in this facility. This project is being led by Dr. Richard Schnee, associate professor in the Department of Physics.
  • Development of two low-background detectors that will provide new capabilities important not only for planned underground physics experiments but also for industrial applications, especially in semiconductor and nuclear security sectors. This project is being led by Dr. Juergen Reichenbacher, assistant professor in the Department of Physics.
  • Selective liquefaction of lignin and biomass wa...
Last Edited 2/3/2017 09:23:18 AM [Comments (0)]