Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
Medical Research

Mines researchers explore killing cancer with cold plasma

Kristen Haller, a mechanical engineering major at South Dakota School of Mines & Technology with plans to go to medical school after graduation in December 2019, and Jordan Hoops, a chemical and biological engineering PhD student, demonstrate the cold plasma technology.

While using cold plasma to kill cancer cells isn’t an entirely novel concept, a team of researchers and students at South Dakota School of Mines & Technology are exploring new ways to regulate cold plasma technology to target and kill cancer cells while leaving healthy cells alive.

If successful, the technique would prove to be a drug-free, minimally invasive cancer treatment that would affect the lives of millions of patients around the world.   

Plasma is ionized gas – an energetic state of matter where some of the electrons in the outer atomic orbitals have become separated from the atom. In other words, it’s a collection of ions and electrons no longer bound to each other. Cold plasma is a partially ionized gas where particles possess much higher energy.

SD Mines assistant professors Prasoon Diwakar, Ph.D., of the mechanical engineering department, and Timothy Brenza, Ph.D., of the chemical and biological engineering department, are overseeing the research with undergraduate mechanical engineering students Kristen Haller and Nicole Miller. Chemical and biological engineering PhD student Jordan Hoops and applied biological sciences undergraduate student Taylor Bright are also contributing to the work. Bright will be continuing the research in this area as an accelerated master’s student in biomedical engineering.

Diwakar began researching cold plasma cance...

Last Edited 10/29/2019 01:21:23 PM [Comments (0)]

SD Mines Receives Imaging Scientist Grant for Cutting-Edge Live Cell Imaging

Brandon Scott, Ph.D., a postdoctoral researcher in Nanoscience and Nanoengineering at SD Mines, adjusts part of the Lattice Light Sheet Microscope (LLSM) used to make dynamic 3D movies showing the inner workings of living cells.

Brandon Scott, Ph.D., a post-doctoral researcher in Nanoscience and Nanoengineering, and  affiliated with the imaging core of BioSystems Networks / Translational Research, or BioSNTR (pronounced "bio-center") at the South Dakota School of Mines & Technology, is one of 17 scientists in the United States to be supported by a $17-million dollar grant from the Chan Zuckerberg Initiative (CZI) to select imaging centers across the country. The grant will support Scott to continue his work on cutting-edge imaging science using the Lattice Light Sheet Microscope (LLSM) and a suite of state-of-the-art imaging tools established by the imaging core of BioSNTR at SD Mines.

The centerpiece of the application was 3D imaging of living cells using the LLSM. This powerful tool allows the visualization of life at the cellular level in ways previously not possible, giving researchers the ability to view the inner workings of cells dynamically. The work could have impact on a wide range of medical research, from immunotherapy to cancer research. These new imag...

Last Edited 3/20/2019 03:49:54 PM [Comments (0)]

Lasers Light the Way to New Technologies

Steve Smith, Ph.D., professor and director of Nanoscience and Nanoengineering at the SD Mines, works with student Laura Brunmaier.

This year, the Nobel Prize in Physics was awarded to three individuals for “groundbreaking inventions in the field of laser physics”: Arthur Ashkin with Bell Laboratories in the United States; Gerard Mourou of the École Polytechnique, Palaiseau, France, and the University of Michigan, Ann Arbor; and Donna Strickland from the University of Waterloo in Canada.

Steve Smith, who earned his Ph.D. doing research in a National Science Foundation Science and Technology Center directed by Mourou at the University of Michigan, was pleased to hear Mourow was receiving a share of the Nobel Prize.

“It’s nice he received a part of this prize. But it also gives acknowledgement to a lot of people in different areas of laser physics. That’s usually how it works—one person gets the prize but there are hundreds of people doing similar work that is very impactful, and this elevates their research as well,” said Smith, who is a professor and director of Nanoscience and Nanoengineering at the South Dakota School of Mines & Technology (SD Mines).

At Deep Talks: Nobel Day, Smith will discuss the topics relating to this year's Nobel Prize in Physics, including Mourou’s work in the field of laser physics and how it has impacted a variety of scientific and technologica...

Last Edited 11/27/2018 09:51:18 AM [Comments (0)]

Engineering an End to Back Pain

Marit Johnson, a PhD candidate at SD Mines, is focusing her research on intervertebral discs in the lower back.

There is a good chance you are sitting down right now. It’s possible you’ve been sitting all day, or maybe you’ve even been sitting every day for the last few decades.

“There is a trend in the 21st century that 80 percent of our jobs require sitting, and it’s even more so when you include leisure time,” says Marit Johnson (CE 96), a PhD candidate in biomedical engineering at SD Mines.

You may guess that spending all this time in a chair is not so good for your health. In fact, research is now showing prolonged sitting may contribute to lower back pain. “Eighty percent of us will experience back pain in our lifetime,” says Johnson. "If your job requires long hours in a chair, back pain can be a real issue."

Johnson’s research is focused on the intervertebral discs of the lower back. These discs are in between the vertebrae, or bones, of the spine, and their softer tissue provides cushion and flexibility. They are key components of a healthy and functional spine.

Research shows that intervertebral discs need to exchange fluid to maintain a healthy environment, similar to how our bodies need breathing to exchange carbon dioxide with oxygen for our survival. “Typically, when we wake up in the morning we’re taller,” says Johnson. At night when we sleep the discs pull in fluid and they expand. As the day goes on,...

Last Edited 7/30/2018 01:35:16 PM [Comments (0)]

Microscopy Trifecta Examines How Cells Engulf Nutrients, Viruses

As part of her doctoral research at the South Dakota School of Mines & Technology nanoscience and nanoengineering program, Amy Hor examines chemically fixed cells using correlated fluorescence and atomic force microscopy. She worked under the direction of professor Steve Smith. The collaborative research, which also involved microscopy teams from South Dakota State University and the National Institutes of Health, showed that membrane bending occurs at all stages of clathrin assembly.

Scientists have a better understanding of a mechanism that allows cells to internalize beneficial nutrients and not-so-beneficial viruses, thanks to collaboration among researchers from two South Dakota universities and the National Institutes of Health.           

South Dakota State University associate professor Adam Hoppe, South Dakota School of Mines & Technology professor Steve Smith and NIH scientists Justin Taraska and Kem Sochacki combined three unique types of microscopy to track how a protein called clathrin triggers cell membrane bending. They found that clathrin, which creates a honeycomb shaped scaffold on the cell membrane, has an unexpected amount of plasticity when pinching off small portions of the cell membrane. Their work was published in the Jan. 29, 2018, issue of Nature Communications.

Hoppe and Smith work collaboratively through the South Dakota BioSystems Networks and Translational Research (BioSNTR) center, which is funded through the South Dakota Research Innovation Center program and the National Science Foundation’s Established Program to Stimulate Competitive Research program. A greater understanding of how cells internalize material will help BioSNTR researchers working with Sioux Falls-based SAB Biotheraputics to develop new alternative treatments for influenza.

The contributions of NIH scientists Justin Taraska and Kem Sochacki were made possible through a federally fund...

Last Edited 4/26/2018 01:37:40 PM [Comments (0)]

SD Mines Researchers Pioneer New Testing Method That Identifies Pathogenic Potential in South Dakota Waterways

The project included over 1000 DNA extractions from bacteria in water samples taken out of Rapid Creek and the Big Sioux River over a two-year period.

Researchers at the South Dakota School of Mines & Technology have completed a groundbreaking study on harmful bacteria found in two important South Dakota waterways. The research, undertaken by Ph.D. candidate Kelsey Murray, found genes related to harmful E. coli in parts of the Big Sioux River and Rapid Creek.  

Public health officials often test streams and rivers for fecal coliform bacteria or E. coli, as this group of bacteria can be an indicator of pollution from animal or human waste. But, not all forms of E. coli are dangerous to humans; in-fact most are harmless. This study pioneered new testing methods that more accurately assess the public health risk from fecal contaminated waters by singling out and testing for genes associated with harmful forms of E. coli, including Shiga-toxigenic E. coli (STEC). 

Murray’s research, performed under Linda DeVeaux, Ph.D., and Lisa Kunza, Ph.D., is titled “Path-STREAM: Development and Implementation of a Novel Method for Determining Potential Risk from Pathogenic Bacteria in Surface Water Environments” Path-STREAM stands for Pathogenicity Profiling: Shiga Toxins and Related E. coli Attributes identification Method.

The project included over 1000 DNA extractions from bacteria in water samples taken out of Rapid Creek and the Big Sioux River over a two-year period. The effort built a method to identify the pathogenic genes associated with STEC and other...

Last Edited 8/24/2018 03:49:36 PM [Comments (0)]