Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
STEM Education Research

SD Mines Students Develop Free Robot Programming Simulator

The RoboScience Simulator looks like a rudimentary video game on the screen, but gets the job done when it comes to teaching students to code. Pictured below: Members of the RoboScience Simulator senior design team include computer science majors (pictured) Samuel Williams, Kendra Deziel and Ryley Sutton. Team members not pictured are Christopher Smith, a master’s student in computational sciences and robotics, and computer science major Andrew Stelter.

Robot Programming Simulator

When it comes to programming actual robots, things get very expensive, very quickly.

“Robots are unforgiving,” says Dr. Jeffrey McGough, professor of mathematics and computer science at South Dakota School of Mines & Technology. “And maintenance of robots is painful.”

Students learning to program autonomous robots often spend more time repairing them after they are damaged as a result of coding mistakes than they do learning to actually program. An incorrectly programed robot might drive off a table top or crash into a wall, requiring hours of hands-on repair work, McGough says.

McGough began looking for curriculum and/or software to teach his students robot programming seven years ago. He quickly realized there was little available. He experimented with a Roomba Robot Vacuum, but the maintenance costs quickly added up.

Robot Programming Simulator Read Full Article
Last Edited 7/31/2018 07:56:20 AM [Comments (0)]

SD Mines Scientists and Students Contribute to IceCube Breakthrough

In this artistic rendering, based on a real image of the IceCube Lab at the South Pole, a distant source emits neutrinos that are detected below the ice by IceCube sensors, called DOMs. Credit: Icecube/NSF

An international team of scientists, including researchers at the South Dakota School of Mines & Technology, have found the first evidence of a source of high-energy cosmic neutrinos, ghostly subatomic particles that can travel unhindered for billions of light years from the most extreme environments in the universe to Earth.

Detecting high-energy cosmic neutrinos requires a massive particle detector, and IceCube is by volume the world’s largest. Encompassing a cubic kilometer of deep, pristine ice a mile beneath the surface at the South Pole, the detector is composed of more than 5,000 light sensors arranged in a grid. When a neutrino interacts with the nucleus of an atom, it creates a secondary charged particle, which in turn produces a characteristic cone of blue light that is detected by IceCube and mapped through the detector’s grid of photomultiplier tubes. Because the charged particle along the axis of the light cone stays essentially true to the neutrino’s direction, it gives scientists a path to follow back to the source.

The observations, made by the IceCube Neutrino Observatory at the U.S. Amundsen–Scott South Pole Station and confirmed by telescopes around the globe and in Earth’s orbit, help resolve a more than a century-o...

Last Edited 7/19/2018 12:52:02 PM [Comments (0)]

Ballooning in the Shadow of the Moon

This image, courtesy of the South Dakota Solar Eclipse Balloon Team, shows the moon's shadow crossing the Nebraska Panhandle during the Great American Eclipse of 2017.

At 10:35 a.m. on August 21, 2017, in a field in front of a small Nebraska Panhandle farmhouse, a team consisting of SD Mines students, Black Hills area high school students, teachers and community members, meticulously followed a set of steps they had practiced many times before. Payloads were carefully secured, batteries checked, and scientific instruments turned on and tested. Soon, helium was coursing through a hose from tanks in the back of a pickup truck into an eight-foot-tall balloon laid out on the soft grass.

Above the desolate cornfields and sandhills of northwestern Nebraska the moon was starting its path across the sun–the arc of its shadow racing across the country toward this team. The Great American Eclipse was underway.

The South Dakota Solar Eclipse Balloon Team had been working for two years to prepare for this one sliver in time. Their goal—to launch this balloon at the exact moment to loft the payload to an altitude of about 100,000 feet, under the moon’s shadow, during two minutes of totality. On board were video cameras, a radiation detector, GPS, and other scientific experiments. This project aimed to capture images and data from the eclipse. The radiation detector would help measure the flux of cosmic rays in the upper atmosphere as the moon obscured the sun. The video cameras would capture the circle of the moon’s shadow on the earth. The team designed and built some of ...

Last Edited 5/17/2018 03:53:34 PM [Comments (0)]

SD Mines Helps Keep Two of the World’s Most Sensitive Dark Matter Experiments Clean

Radon reduction researchers pictured with the machine they designed are (from left to right) SD Mines physics graduate student Joseph Street, Richard Schnee, Ph.D., along with lab technicians David Molash and Christine Hjelmfelt.

South Dakota School of Mines & Technology is helping to ensure highly sensitive underground dark matter experiments are free of radon that could contaminate the results. SD Mines researchers are building a radon mitigation system at SNOLAB in Canada and at the Sanford Underground Research Facility (SURF) in Lead, S.D.

The team, led by Richard Schnee, Ph.D., professor and head of the physics department at SD Mines, is building machines that filter out radon particles to produce ultra-pure air needed for the SuperCDMS experiment in SNOLAB and for the LZ (LUX-ZEPLIN) experiment in SURF.  The team is also helping ensure the parts used to build the experiments are relatively free of radon.

“Our detectors need very low levels of radon,” Schnee says. While the radon levels at the 4850 Level at SURF are safe for humans, they are too high for sensitive experiments like LZ, which go deep underground to escape cosmic radiation, Schnee explains. “We will take regular air from the facility and the systems will reduce the levels by 1,000 times or more.”

The system in SURF will be installed in the...

Last Edited 5/17/2018 03:54:35 PM [Comments (0)]

$540,000 NSF Grant Boosts 6-12th Grade STEM Teaching Efficacy

Teachers at Mines this summer taking part in the SD-RET program.

Teachers in South Dakota now have the chance to work side-by-side with faculty at SD Mines and bring what they learn back to the classroom.

The Sustainable Development-Research Experience for Teachers (SD-RET) program helps integrate new engineering and science technologies into 6-12th grade classrooms in rural America. The program is thanks to a $543,466 grant from the National Science Foundation (NSF). It gives teachers new tools and resources to improve Science, Technology, Engineering and Math (STEM) curriculum aligned with state standards. The grant increases collaboration between South Dakota teachers, industry partners and Mines faculty..

The SD-RET program helps integrate new engineering and science technologies into 6-12th grade classrooms in rural America. The program is sponsored by a $543,466 grant from the National Science Foundation (NSF). It gives teachers new tools and resources to improve Science, Technology, Engineering and Math (STEM) curriculum aligned with state standards. The grant increases collaboration between South Dakota teachers, industry partners and Mines faculty.

“STEM education and research are a significant part of our mission and strategy, and therefore this NSF grant will have a significant impact on future education of South Dakota 6-12th grade students in scienc...

Last Edited 7/18/2017 02:34:48 PM [Comments (0)]

South Dakota Space Grant Awards $176,000 in NASA Funding to SD Mines and Five South Dakota Institutions

A team of Mines students working on a component of the National Solar Eclipse Balloon Project. This is one example of a research funded by the South Dakota Space Grant Consortium headquartered at Mines.

The South Dakota Space Grant Consortium (SDSGC) has provided nine awards totaling approximately $176,000 in NASA funding to SD Mines and five affiliate members of the Consortium.

The Space Grant Consortium, headquartered at the South Dakota School of Mines & Technology, is a statewide network of 20 member organizations from education, industry and government. As the link between NASA and the citizens of South Dakota, the Consortium’s mission is to instill the spirit of exploration and discovery in students, educators and the general public, with a special focus on the fields of science, technology, engineering and math that are essential for the development of the nation’s workforce.

One grant of $17,100 was awarded directly to a Mines student, Kari Pulli, a junior in mechanical engineering, as a scholarship for a project titled “Student CO-OP for Aerospace and High-Altitude Technology Development.”  Pulli was selected by officials at Raven-Aerostar for an eight-month student internship at its Sioux Falls facility. This is on top of a previously announced SDSGC grant of $25,000 to SD Mines for a project titled: “Computational Astronomy for Teachers and Their Students.

In total, nine winning projects were competitively selected from among 15 proposals submitted under the SDSGC’s FY2016 Project Innovati...

Last Edited 2/3/2017 10:02:17 AM [Comments (0)]

Brickey Awarded $300,000 Grant to Help Rebuild US Mining Faculty through Research

Dr. Andrea Brickey has been awarded $300,000 to help rebuild America’s dwindling number of mining engineering faculty through research endeavors.

Dr. Andrea Brickey of the Department of Mining & Engineering Management has been awarded the $300,000 2016 Freeport-McMoRan Career Development Grant, which focuses on rebuilding the faculty pipeline in U.S. mining schools through research.

The award is worth $100,000 per year for three years and will primarily fund two graduate students to assist in her research. Brickey is developing a holistic mine schedule by incorporating additional aspects of the mine’s operation, such as ventilation. The research project,“Production Schedule Optimization for Underground Mining,” addresses processes, efficiencies and safety of mining projects. 

Additionally, the award will fund several undergraduate students and pay for travel for professional developmentopportunities, all of which is intended to support tenure and promotion.

Brickey earned her bachelor’s degree from South Dakota Mines in 1999 and worked for 15 years before returning to academia, earning her doctorate from Colorado School of Mines and then joining the SD Mines faculty ranks last fall. Her industry experience has focused primarily on mining operations and consulting projects in Africa and North and South America, mining copper, gold, silver, nickel, phosphate and coal.

The grant is part of the Academic Career Development initiative of the Society for Mining, Metallurgy & Exploration Inc. (SME) and the SME Foundation to bo...

Last Edited 11/16/2016 02:02:09 PM [Comments (0)]