Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
Security Printing

The Quest to Control the Voxel and the 3D Printing Revolution to Come

Travis Walker, Ph.D., holds an example of a 3D printed item made with two different materials. He and Katrina Donovan, Ph.D., say this object is a large-scale example of the kind of 3D printed materials now possible at scales smaller than a human hair.

Imagine camouflage that renders a subject almost invisible; prosthetic limbs that look and feel like real appendages; smartphone battery power that’s embedded throughout the thin fabric of your clothing; windows that direct light to different parts of the room throughout the day. All of these ideas and much more may be possible with a new age of material science that is now unfolding. Researchers at the South Dakota School of Mines & Technology are learning to manipulate the basic properties of innovative materials to enable revolutionary new products.

“We’re really trying to enhance voxel-level engineering,” says Travis Walker, Ph.D., assistant professor of chemical and biological engineering at South Dakota Mines.

So, what’s a voxel? In photography, the sharpness of an image depends on the number of pixels per inch. More pixels in an image yield more vivid detail.

Move into three dimensions, and resolution is not determined by pixels, but voxels. Like digital photography, the resolution in 3D printing technology keeps getting better. Today, researchers are working to manipulate single voxel sizes that are smaller than the diameter of a human hair. This effort means very fine and detailed 3D printing.

The next evolution in 3D printing may involve the ability to change the properties of a material, voxel by voxel. Just as many different colored pixels make...

Last Edited 2/3/2020 09:15:48 PM [Comments (0)]

SD Mines Researchers Work to Develop Latent Fingerprint and DNA Collection System

The Latent Fingerprint Extraction Team includes (from left to right) Sierra Rasmussen, graduate student; Jon Kellar Ph.D., Mines; William Cross Ph.D., Mines; John Hillard, undergraduate student; John Rapp, graduate student; Stanley May, Ph.D., USD; Jeevan Meruga, Ph.D., SecureMarking, LLC.

Researchers at South Dakota School of Mines & Technology and the University of South Dakota in Vermillion have received a grant of more than $840,000 from the National Institute of Justice to research the development of a handheld device that will read fingerprints and potentially collect DNA. The device, which might look like a handheld bar code reader or be attached to a smartphone, uses nanoparticles and infrared light to detect latent fingerprints on surfaces where fingerprint extraction has traditionally been difficult.    

“We’re designing the whole system,” says Bill Cross, Ph.D., a professor in the Department of Materials and Metallurgical Engineering at SD Mines. “This also could potentially connect via the internet to various fingerprint databases and produce real time results at the scene of the crime or back in the forensic lab.” 

Traditional development of fingerprints has limitations due to several factors, such as the surface where fingerprints are found. Tools with neon colored handles, for example, don’t work well with some curren...

Last Edited 4/26/2018 10:31:36 PM [Comments (0)]