Research@Mines - by Subject
Solar Energy

South Dakota Mines receives $1.3 Million Grant for New Scanning Electron Microscope to Benefit Research and Industry

South Dakota Mines is installing a new Scanning Electron Microscope in the university’s Engineering and Mining Experiment Station.

South Dakota Mines is installing a new Scanning Electron Microscope (SEM) in the university’s Engineering and Mining Experiment Station (EMES) thanks to a $1.3 million grant from the National Science Foundation. The new microscope is just one of many state-of-the-art scientific instruments inside the recently expanded EMES which serves high-tech industry alongside university researchers across the state.

The powerful SEM microscope is a centerpiece of the EMES. It allows researchers to perform high resolution imaging, chemical analysis and sample manipulation for various materials at scales ranging down to 100,000 times smaller than the width of a human hair. The new microscope is a critical resource for a wide variety of research across multiple disciplines.

“The SEM is the most heavily used research instrument on campus,” says Grant Crawford, Ph.D., the director of the Arbegast Materials Processing and Joining Laboratory at Mines and an associate professor in the Department of Materials and Metallurgical Engineering.

The new SEM is equipped with a focused ion beam that dramatically expands its capability over the old system. The ion beam allows researchers to extract samples for separate analysis and cr...

Last Edited 1/19/2021 04:07:49 PM [Comments (0)]

South Dakota Mines EMES Facility Expands to Include Array of Instruments with Environmental Applications

Dr. Scott Beeler uses a gas chromatograph-mass spectrometer (GC-MS) in the Engineering and Mining Experiment Station (EMES) at South Dakota Mines. The GC-MS is used to identify and quantify organic compounds with applications in a wide range of fields such as environmental monitoring, medicine, and oil and gas.

The Engineering and Mining Experiment Station (EMES) at South Dakota Mines has begun overseeing the operation and maintenance of instrumentation within the Shimadzu Environmental Research Laboratory (SERL).

The EMES was founded on the Mines campus in 1903 with a mission to serve mining industry research. Today the mission has expanded to include a much broader range of academic and industry needs with a wide array of scientific equipment that is utilized by industry professionals and university researchers across the region. The EMES has seen equipment investments by the South Dakota Board of Regents and the National Science Foundation totaling more than $2.8 million since 2011. The EMES website lists the range of scientific equipment available for academic research and industry use including the Shimadzu instrumentation.

The SERL was established in 2015 in partnership with Shimadzu Scientific Instruments by Lisa Kunza. Ph.D., associate professor in the Department of Chemistry Biology and Health Sciences at Mines. The SERL is a multidisciplinary research facility that contains a suite of state-of-the-art instrumentation with a focus on environmental applications. SERL instruments enable the chemi...

Last Edited 1/6/2021 03:48:20 PM [Comments (0)]

Hyperloop - Mines Alumnus on the Cutting-Edge of Transportation

“Flying 700 miles per hour through a tube using magnets and sunlight isn’t a dream.”

The baritone narrator in a video describing the proposed Great Lakes Hyperloop makes the case that a twenty-eight minute commute over the 343 miles that separate Cleveland from Chicago is a near-term reality.

Chuck Michael-2For Chuck Michael (CE 77), hyperloop is the future of transportation. “This is a game-changing technology with a huge public benefit,” he says. “You could work in downtown Chicago and live in Cleveland and get to work faster than sitting on the freeway from the Chicago suburbs.”

The hyperloop concept involves a magnetically levitated capsule that is propelled through a vacuum tunnel at velocities approaching the speed of sound using renewable wind and solar energy. Michael is the head of US feasibility studies and regulatory advisor for the company Hyperloop Transportation Technologies based in Los Angeles. “We use a proprietary passive magnetic levitation system, developed at Lawrence Livermore National Lab,” Michael says. A small forward motion on the permanent magnetic array creates a field that aids both propulsion and levitation.

“We can levitate twenty tons at walking speed,” Michael says. A "re...

Last Edited 2/3/2020 09:18:48 PM [Comments (0)]

SD Mines Team Pushes to Put CubeSat Swarm in Space

This image shows what a swarm of CubeSats orbiting Earth might look like. Credit NASA.

Satellites are often thought of as huge complicated devices that are deployed on the tops of rockets or in space shuttle payloads. They hold massive telescopes, sophisticated weather monitoring devices or global positioning system components.  The price tag for large satellites is often measured in billions, not millions. 

CubeSats are different. They’re smaller - think volleyball, not Volkswagen - and they’re cheaper.  NASA describes a CubeSat as a “low-cost pathway to conduct scientific investigations and technology demonstrations in space, thus enabling students, teachers, and faculty to obtain hands-on flight hardware development experience.”  The cost of these nanosatellites is small enough to fit into many school budgets. CubeSats are built to investigate areas of scientific interest such as the earth’s atmosphere, space weather, in-space propulsion, radiation testing, and communication, to name a few. Satellites are selected based on their investigations and how they align with NASA’s strategic plan.

One area of CubeSat research at the South Dakota School of Mines & Technology is to expand from one small satellite to a swarm of small satellites working together. This has the potential to multiply the impact and effectiveness of a single CubeSat.

“Sometimes you want t...

Last Edited 9/3/2019 04:50:28 PM [Comments (0)]

Ahrenkiel Research Focuses on Nanoengineered Next-Generation Solar Cells

Dr. Phil Ahrenkiel in one of his campus laboratories.

Dr. Phil Ahrenkiel of the South Dakota School of Mines & Technology’s Nanoscience and Nanoengineering Program is researching next-generation solar cells thanks to a $179,000 U.S. Department of Energy (DOE) grant. 

Ahrenkiel is developing a novel approach for using earth-abundant and widely available metal aluminum to improve commercializable photovoltaic solar cells. The new cells could help lower the cost of renewable energy. 

These emerging nanoengineering approaches could produce enhanced efficiencies and reduced manufacturing costs and lead to increased production of next-generation solar cells in the United States.  

Ahrenkiel’s goal is to convert sunlight into electricity by depositing thin layers of solar cells onto inexpensive aluminum substrates. 

If the research is successful, it will lead to the fabrication of solar cells on thin, flexible, and lightweight aluminum ribbons or sheets, which could be transferred to glass and integrated with residential or commercial buildings. This technology would be adaptable to a roll-to-roll semiconductor deposition process for mass production of inexpensive solar cells. 

The research will be performed using existing device-processing, electron-microscopy, and optoelectronic-characterization capabilities available at South Dakota Mines, which is partnering with Rochester Institute of Technology and Lakewood Semiconductors on this project ...

Last Edited 11/3/2016 08:59:11 PM [Comments (0)]

Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493