Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines - by Subject
Water Research

$1.5 Million NSF Grant Brings Native Students into STEM Fields at Three South Dakota Schools

South Dakota School of Mines student Bo Paulsen holds the stake, while Oglala Lakota College student Wilson King wields the sledge hammer under the supervision of OLC instructor Lyle Wilson. In the background are Mines students Lyndsey Penfield and Logan Gayton. They are part of a team of students who designed and built a greenhouse in Kyle, which was part of effort to increase local food production on the Pine Ridge Reservation.

Three schools in South Dakota are teaming up in a continued effort to encourage more Native American students to enter the fields of Science, Technology, Engineering and Math (STEM). Oglala Lakota College, South Dakota School of Mines & Technology and the South Dakota State University were each awarded $495,000 grants from the National Science Foundation to evaluate the ongoing program and move the effort forward. The project, OLC, SDSU and SD Mines Pre-Engineering Education Collaborative (OSSPEEC), includes faculty, students, scientists and engineers working to solve real-world problems on the Pine Ridge Reservation.

The collaborative includes work to help Native students at OLC enter pre-engineering programs and then finish their degrees at South Dakota School of Mines or South Dakota State. The project also provides professional development for college educators to help boost the number of Lakota students who enter pre-engineering classes.

Jason Tinant is the OSSPEEC principal investigator at Oglala Lakota College where he is also an environmental science instructor. “Engineering is the application of science for the betterment of the community,” says Tinant. “This kind of engineering education can increase tribal sovereignty over water, food and language. This project embodies the Lakota ideals of “wolakociypai,” (learning the ways of the Lakota for the community) and “tiospaye” (the making of new relations),” he adds.  

Last Edited 6/8/2017 10:43:03 AM [Comments (0)]

Mines Researchers Study Kootenai River Pollutants in Montana, Other Areas

South Dakota Mines student Emily Stickney conducts research on pollutants in the Kootenai River in Montana

A recent award by the U.S. Army Corps of Engineers is funding South Dakota School of Mines & Technology research on how changes in land use increase pollutants and influence the health of the Kootenai River and Lake Koocanusa in Montana, Idaho and British Columbia.

Recent land use changes in the Kootenai River watershed include increased coal mining and alterations to agricultural practices.

Dr. Lisa Kunza of the Department of Chemistry & Applied Biological Sciences, is heading a collaborative research team that includes students, other university partners, and agency collaborators. The team has already received $160,000 and is expecting to receive up to $400,000 for its efforts over the next five years.

Selenium and nitrate loads are on the rise in the Kootenai River as it enters Lake Koocanusa. Selenium is a metal found in natural deposits and may be exposed during mining activity. In 2012 alone, selenium loads into the river exceeded 29,000 pounds, a five-fold increase since 1992. There is heightened concern about possible buildup of selenium in fish tissue. Nitrate loads have increased substantially as well and may alter the resources available for fisheries. 

Endangered Kootenai White Sturgeon and other organisms in the river and reservoir could also be affected by the pollutants.

Emily Stickney from Boise, Idaho, is among the undergraduate and graduate student researchers ...

Last Edited 1/17/2017 09:45:02 AM [Comments (0)]

Amazon Research

In the Amazon River, three distinct water types collect to create a uniquely rich breeding ground for extreme aquatic life.

Laurie Anderson Explores How Marine Clams Found Their Way Into one of the World’s Largest Rivers

The Amazon River is teeming with life, from solitary four-hundred-pound catfish to shoals of eight-pound piranha. But in the Amazon basin around Santarem, Brazil—where white water, clear water, and black water rivers pool together—it’s the ancient tiny mollusks that have captured the attention of Mines researcher Dr. Laurie Anderson.

The three distinct water types collect here to create a uniquely rich breeding ground for extreme aquatic life in one of the world’s largest rivers.


Photo of Dr. Anderson by Mark Siddall, American Museum of Natural History

Anderson’s research interest is in a little known genus of typically saltwater Corbulidae clam from the last member of a once diverse radiation in the western Amazon. She has devoted much of her career to studying this clam and other family members in the fossil record, and her current research continues to explore its evo...

Last Edited 1/3/2017 08:43:26 AM [Comments (0)]

DeVeaux, Kunza, Murray Study E. coli in State Waters

Mines researchers have been testing toxin levels in South Dakota waterways in an effort to trace the extent and the origins.

The Big Sioux River and Rapid Creek winding through the heart of South Dakota’s two biggest cities transform into nature’s playground during the summer months, but they are far from pristine. They are among the nearly 70 percent of waterways on the state’s list of impaired bodies that do not meet water-quality standards. 

The Big Sioux has been on the list nearly two decades, but until last year no one had sampled it for genes that can make the often-harmless E. coli into a disease-causing pathogen, which sickens around 95,000 Americans annually, according to the Centers for Disease Control.

Faculty researchers Dr. Lisa Kunza, an aquatic ecologist, and Dr. Linda DeVeaux, a microbiologist and geneticist, both from the South Dakota School of Mines & Technology Department of Chemistry & Applied Biological Sciences, are searching for answers that could ultimately improve public safety. Biomedical engineering doctoral student Kelsey Murray has been assisting.

Their initial findings last spring caused alarm among Sioux Falls city and county officials. Ninety-five percent of the samples pulled from Skunk Creek and the Big Sioux, both in Sioux Falls, contained a Shiga toxin gene that can turn E. coli into a dangerous strain. Intimin, a gene that helps E. coli colonies embed themselves in the human gut and thrive, was found in 100 percent of the samples.

In comparison, the prese...

Last Edited 11/3/2016 03:04:35 PM [Comments (0)]