Research Inquiries

For inquiries related to SD Mines Research, contact:

Research Affairs

S.D. School of Mines & Technology
501 E. St. Joseph Street
Suite 102, O'Harra Building
Rapid City, SD  57701

(605) 394-2493

Research@Mines

Research@Mines

Research at Mines happens every day of the year, involves faculty and students at every academic level, and frequently includes collaboration across the state, the nation and the globe.

Radio-Pure Nearly a Mile Down: Keeping Dark Matter Detectors Clean and Accurate

Eric Morrison a Ph.D. graduate student at South Dakota Mines in front of the air purifier used with LZ.

If you want to breathe some of the most radioactive free, or “radio-pure,” air on earth, go 4,850 feet underground to the site of the LZ (LUX-ZEPLIN) experiment at the Sanford Underground Research Facility (SURF).

A research team at South Dakota School of Mines & Technology has built an air purifier that has reduced the radon in the air to about 50 times lower than typical outdoor air. The team is helping to ensure success for one of the world’s most sensitive dark matter experiments — LZ. Dark matter has never been directly observed. But it is believed to make up 85% of all the matter in the universe. The mystery of dark matter is considered to be one of the most pressing questions in particle physics. The LZ experiment is run deep underground where it will be protected from high-energy particles, called cosmic radiation, which can create unwanted background signals. But underground environments pose other challenges. They are often higher in radon, which can also impede sensitive experiments.

“Usually the concentration of radon underground is quite high, but the equipment that has been installed in SURF reduces radon background by a factor of a thousand,” says Richard Schnee, Ph.D., the physics department head at...

Last Edited 1/6/2020 12:11:08 PM [Comments (0)]

Hyperloop - Mines Alumnus on the Cutting-Edge of Transportation

“Flying 700 miles per hour through a tube using magnets and sunlight isn’t a dream.”

The baritone narrator in a video describing the proposed Great Lakes Hyperloop makes the case that a twenty-eight minute commute over the 343 miles that separate Cleveland from Chicago is a near-term reality.

Chuck Michael-2For Chuck Michael (CE 77), hyperloop is the future of transportation. “This is a game-changing technology with a huge public benefit,” he says. “You could work in downtown Chicago and live in Cleveland and get to work faster than sitting on the freeway from the Chicago suburbs.”

The hyperloop concept involves a magnetically levitated capsule that is propelled through a vacuum tunnel at velocities approaching the speed of sound using renewable wind and solar energy. Michael is the head of US feasibility studies and regulatory advisor for the company Hyperloop Transportation Technologies based in Los Angeles. “We use a proprietary passive magnetic levitation system, developed at Lawrence Livermore National Lab,” Michael says. A small forward motion on the permanent magnetic array creates a field that aids both propulsion and levitation.

“We can levitate twenty tons at walking speed,” Michael says. A "re...

Last Edited 12/20/2019 02:37:09 PM [Comments (0)]

Nanopareil: Where Tiny Fibers Reap Huge Rewards

Dr. Todd Menkhaus, a professor of biological and chemical engineering at South Dakota School of Mines & Technology, is one of the researchers to develop the Nanopareil technology. Nanopareil produces a material used to filter out impurities in such industries as pharmaceuticals, reducing costs and speeding up the process significantly.

The technology at the heart of Nanopareil revolves around nanofibers a thousand times smaller than a human hair, but its potential impact on the pharmaceutical industry could be massive.

“The pharmaceutical industry really needs this technology,” says Todd Menkhaus, PhD, a professor of biological and chemical engineering at South Dakota School of Mines & Technology and one of the researchers to develop the Nanopareil technology. “We developed this technology specifically to lower the costs of purifying lifesaving vaccines and medications so that they would be more accessible and more economical around the globe.”

Nanopareil LLC got its start on the SD Mines campus in 2008 when Menkhaus and Hao Fong, PhD, a professor in chemistry, biology, and health sciences, began collaborating on research into nanofibers and separations. They quickly found some pretty exciting results. By spraying or “electro spinning” polymer nanofibers into multiple layers, Fong and Menkhaus created sheets of a filter or sponge-like material. In its initial state, the material feels almost spongy to the touch. After final preparation, however, the sheet material feels and looks much like simple white paper.  

Fong and Menkhaus discovered that when the material is used as a filter, it works as a sponge and collects or traps the targeted materials while allowing the inactive ingredients to flow through. Used in a pharmaceutical setting, ...

Last Edited 12/3/2019 02:37:21 PM [Comments (0)]

SD Mines Researchers Pioneer New Methods to Turn Biorefinery Waste into Valuable Products

Vinod Amar, Ph.D., one of the research scientists working on the project is shown here in his lab.

Shende Research Team 2A research team at the South Dakota School of Mines & Technology is beginning work on pilot scale testing of new methods that turn biorefinery waste into valuable products. The waste biomass or byproducts generated by ethanol plants and other biorefineries, such as corn stover, are normally thrown away—but finding cost-effective means of using this waste to make new products will generate extra revenue for the facilities, help lower fuel costs, reduce carbon emissions, and ultimately help farmers.

“This is one more way SD Mines is pioneering research that helps the environment while increasing efficiency and profit margins for our industry partners.  This is the kind of work that can have a positive impact on the economy of South Dakota,” says SD Mines Vice President of Research Ralph Davis, Ph.D.

Rajesh Shende, Ph.D., professor in the chemical and biological engineering department at SD Mines, is leading the research. This work began in Shende’s lab with a $2.16 million grant from the Department of Energy (DOE) Bioenergy Technologies Offi...

Last Edited 11/26/2019 03:30:38 PM [Comments (0)]