Research@Mines Archive:
July, 2018

SD Mines Scientists and Students Contribute to IceCube Breakthrough

In this artistic rendering, based on a real image of the IceCube Lab at the South Pole, a distant source emits neutrinos that are detected below the ice by IceCube sensors, called DOMs. Credit: Icecube/NSF

An international team of scientists, including researchers at the South Dakota School of Mines & Technology, have found the first evidence of a source of high-energy cosmic neutrinos, ghostly subatomic particles that can travel unhindered for billions of light years from the most extreme environments in the universe to Earth.

Detecting high-energy cosmic neutrinos requires a massive particle detector, and IceCube is by volume the world’s largest. Encompassing a cubic kilometer of deep, pristine ice a mile beneath the surface at the South Pole, the detector is composed of more than 5,000 light sensors arranged in a grid. When a neutrino interacts with the nucleus of an atom, it creates a secondary charged particle, which in turn produces a characteristic cone of blue light that is detected by IceCube and mapped through the detector’s grid of photomultiplier tubes. Because the charged particle along the axis of the light cone stays essentially true to the neutrino’s direction, it gives scientists a path to follow back to the source.

The observations, made by the IceCube Neutrino Observatory at the U.S. Amundsen–Scott South Pole Station and confirmed by telescopes around the globe and in Earth’s orbit, help resolve a more than a century-o...

Last Edited 10/3/2023 04:24:13 PM [Comments (0)]

Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Vanderboom Laboratory for Entrepreneurial Research (V-LAB)
Rapid City, SD  57701

(605) 394-2493